Skip to main content
Log in

Convergence of solutions of H-systems or how to blow bubbles

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V. Benci & J. M. Coron, The Dirichlet problem for harmonic maps from the disk into the Euclidean n-sphere. Ann. I.H.P. Analyse Nonlinéaire (to appear).

  2. H. Brezis & J. M. Coron, Multiple solutions of H-systems and Rellich's conjecture. Comm. Pure Appl. Math. 37 (1984), 149–187. See also Sur la conjecture de Rellich pour les surfaces à courbure moyenne prescrite. C. R. Acad. Sc. Paris 295 (1982), 615–618.

    Google Scholar 

  3. H. Brezis & J. M. Coron, Convergence de solutions de H-systèmes et application aux surfaces a courbure moyenne constante. C. R. Acad. Sc. Paris 298 (1984), 389–392.

    Google Scholar 

  4. H. Brezis & E. H. Lieb, Minimum action solutions of some vector field equations. Comm. Math. Phys. (to appear).

  5. B. Gidas, W. M. Ni & L. Nirenberg, Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 200–243.

    Google Scholar 

  6. R. D. Gulliver, R. Osserman & H. L. Royden, A theory of branched immersions of surfaces. Amer. J. Math. 95 (1973), 750–812.

    Google Scholar 

  7. E. Heinz, Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung. Math. Ann. 127 (1954), 258–287.

    Google Scholar 

  8. S. Hildebrandt, On the Plateau problem for surfaces of constant mean curvature. Comm. Pure Appl. Math. 23 (1970), 97–114.

    Google Scholar 

  9. S. Hildebrandt, Nonlinear elliptic systems and harmonic mappings. Proc. 1980 Beijing Symp. Diff. Geom. and Diff. Eq., S. S. Chern and Wu Wen-tsün ed. Science Press Beijing (1982) and Gordon-Breach.

    Google Scholar 

  10. J. Jost, Harmonic mappings between surfaces. Lectures notes in Math. Volume 1062, Springer (1984).

  11. L. Lemaire, Applications harmoniques de surfaces Riemanniennes. J. Diff. Geometry 13 (1978), 51–78.

    Google Scholar 

  12. E. H. Lieb, On the lowest eigenvalue of the laplacian for the intersection of two domains. Invent. Math. 74 (1983), 441–448.

    Google Scholar 

  13. P. L. Lions, Principe de concentration-compacité en calcul des variations. C. R. Acad. Sci. Paris 294 (1982), 261–264. The concentration-compactness principle in the calculus of variations: the locally compact case. Part I, Ann. I.H.P. Analyse Non-linéaire 1 (1984), 109–145 and Part II 1 (1984), 223–283.

    Google Scholar 

  14. P. L. Lions, Applications de la méthode de concentration compacité à l'existence de fonctions extrémales. C. R. Acad. Sci. Paris 296 (1983) p. 645–648. The concentration-compactness principle in the calculus of variations: the limit case. Parts I and II, Riv. Iberoamericana (to appear).

    Google Scholar 

  15. W. Meeks & S. T. Yau, Topology of three dimensional manifolds and the embedding problems in minimal surface theory. Annals of Math. 112 (1980), 441–484.

    Google Scholar 

  16. E. A. Ruh, Asymptotic behaviour of non-parametric minimal hypersurfaces. J. Diff. Geometry, 4 (1970), 509–513.

    Google Scholar 

  17. J. Sacks & K. Uhlenbeck, The existence of minimal immersions of 2-spheres. Ann. Math. 113 (1981), 1–24.

    Google Scholar 

  18. J. Serrin, On surfaces of constant mean curvature which span a given space curve. Math. Z. 112 (1969), 77–88.

    Google Scholar 

  19. Y.-T. Siu & S. T. Yau. Compact Kähler manifolds of positive bisectional curvature. Invent. Math. 59 (1980), 189–204.

    Google Scholar 

  20. G. Springer, Introduction to Riemann surfaces. Addison-Wesley, Reading MA-London (1957).

    Google Scholar 

  21. K. Steffen, Flächen konstanter mittlerer Krümmung mit vorgegebenem Volumen oder Flächeninhalt. Archive Rational Mech. Anal. 49 (1972), 99–128.

    Google Scholar 

  22. K. Steffen, On the nonuniqueness of surfaces with prescribed mean curvature spanning a given contour, (to appear).

  23. M. Struwe, Non uniqueness in the Plateau problem for surfaces of constant mean curvature, (to appear).

  24. M. Struwe, A global existence result for elliptic boundary value problems involving limiting nonlinearities, (to appear).

  25. C. H. Taubes, Path connected Yang-Mills moduli spaces. J. Diff. Geom. (to appear).

  26. H. Wente, An existence theorem for surfaces of constant mean curvature. J. Math. Anal. Appl. 26 (1969), 318–344.

    Google Scholar 

  27. H. Wente, The differential equation 56–01 with vanishing boundary values. Proc. A.M.S. 50 (1975), 131–137.

    Google Scholar 

  28. H. Wente, Large solutions to the volume constrainted Plateau proplem. Arch. Rational Mech. Anal. 75 (1980), 59–77.

    Google Scholar 

  29. H. Werner, Das Problem von Douglas für Flächen konstanter mittlerer Krümmung. Math. Ann. 133 (1957), 303–319.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brezis, H., Coron, J.M. Convergence of solutions of H-systems or how to blow bubbles. Arch. Rational Mech. Anal. 89, 21–56 (1985). https://doi.org/10.1007/BF00281744

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00281744

Keywords

Navigation