Bibliography
Almgren, F. J.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math. Soc., vol. 4, 165 (1976).
Bokowski, J., Ungleichungen für den Inhalt von Trennflächen. Arch. d. Math., to appear.
Bokowski, J.: Schranken für Trennflächeninhalte in konvexen Körpern. Preprint, 1982.
Bokowski, J., & E. Sperner: Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math. 311/312, 80–100 (1979).
Bokowski, J., & J. S. Wills: Eine Ungleichung zwischen Volumen., Oberfläche und Gitterpunktsanzahl konvexer Mengen in R3. Acta Math. Acad. Sci. Hung. 25, 7–13 (1974).
Boys, C. V.: Soap bubbles: Their colours and the forces which mold them. New York: Dover 1959.
Collatz, L., & W. Wetterling: Optimization problems. Berlin-Heidelberg-New York: Springer 1971.
Croke, C. B., & A. Weinstein: Closed curves on convex hypersurfaces and periods of nonlinear oscillations. Invent. math. 64, 199–202 (1981).
DeGiorgi, E., Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari. Mem. Accad. Sci. Torino (3) 3, 25–43 (1957).
Donnay, G., & D. L. Pawson: X-ray diffraction studies of echinoderm plates. Science 166, 1147–1150 (1969).
Dziuk, G.: Über die Stetigkeit teilweise freier Minimalflächen. Manuscr. math. 36, 241–251 (1981).
Federer, H.: The area of a nonparametric surface. Proc. Amer. Math. Soc. 11, 436–439 (1960).
Grüter, M., S. Hildebrandt, & J. C. C. Nitsche: On the boundary behavior of minimal surfaces with a free boundary which are not maxima of the area. Manuscr. math. 35, 387–410 (1981).
Hadwiger, H.: Gitterperiodische Punktmengen und Isoperimetrie. Monatsh. Math. 76, 410–418 (1972).
Hadwiger, H.: Über die Flächeninhalte ebener Schnitte konvexer Körper. Elem. Math. 30, 97–102 (1975).
Hensley D.: Slicing the cube in Rn and probability. Proc. Amer. Math. Soc. 73, 95–100 (1979).
Hopf H.: Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Math. Nachr. 4, 232–249 (1950/51).
Iseli, M.: Über die Flächeninhalte ebener Schnitte konvexer Körper. Elem. Math. 33, 129–134 (1978).
Jäger, W.: Behavior of minimal surfaces with free boundaries. Comm. P. Appl. Math. 23, 803–818 (1970).
Kerékjártó, B. v.: Vorlesungen über Topologie I. Flächentopologie. Berlin: Springer 1923.
Longley, W., & T. J. McIntosh: A bicontinuous tetrahedral structure in a liquid-crystalline lipid. Nature, 303, 612–614 (1983).
Nagano, T., & B. Smyth: Periodic minimal surfaces. Comment. Math. Helv. 53, 29–55 (1978).
Nissen, H. U.: Crystal orientation and plate structure in echinoid skeletal units. Science 166, 1150–1152 (1969).
Nitsche, J. C. C.: Vorlesungen über Minimalflächen. Berlin-Heidelberg-New York: Springer 1975.
Nitsche, J. C. C.: Stationary minimal surfaces in spheres. Preprint, 1981.
Nitsche, J. C. C.: Partition of a convex body by a surface of stationary area. Abstracts Amer. Math. Soc. 3, 248 (1982).
Nitsche, J. C. C.: A volume formula. Analysis 3, 337–346 (1983).
Schmidt, W. M.: Volume, surface area and the number of integer points covered by a convex set. Arch. d. Math. 23, 537–543 (1972).
Schwarz, H. A.: Gesammelte Mathematische Abhandlungen. Vol. I. Berlin: Springer 1890.
Scriven, L. E.: Equilibrium bicontinuous structure. Nature 263, 123–125 (1976).
Scriven, L. E.: Equilibrium bicontinuous structures. In: Miscellization, solubilization, and microemulsions. Vol. 2, pp. 877–893. K. L. Mittal ed. New York-London: Plenum Press 1977.
Smyth, B.: Stationary minimal surfaces with boundary on a simplex. Invent. math. 76, 411–420 (1984).
Thiompson, D. W.: On growth and form. New ed., Univ. Press, Cambridge, 1942.
Thomson, Sir W.: On the division of space with minimum partitional area. Acta Math. 11, 121–134 (1887–88).
Zindler, K.: Sehnen, die Umfang und Inhalt halbieren. Monatsh. Math. Phys. 31, 44–45 (1921).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Nitsche, J.C.C. Stationary partitioning of convex bodies. Arch. Rational Mech. Anal. 89, 1–19 (1985). https://doi.org/10.1007/BF00281743
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00281743