Skip to main content
Log in

Phragmén-Lindelöf and comparison theorems for elliptic equations with mixed boundary conditions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Oddson, J. K., Phragmén-Lindelöf and comparison theorems for elliptic-parabolic differential equations. Can. J. Math, (to appear).

  2. Gevrey, M., Sur certaines propriétés des fonctions harmoniques et leur extension aux équations aux dérivées partielles. C. R. Acad. Sci. Paris 183, 546–548 (1926).

    Google Scholar 

  3. Weinstein, A., Zum Phragmén-Lindelöfschen Ideenkreis. Abh. Math. Sem. Univ. Hamburg 6, 263–264 (1928).

    Google Scholar 

  4. Krzyzanski, M., Sur le problème de Dirichlet pour l'équation lineare du type elliptique dans un domaine non borné. Rend. Acad. Naz. dei Lincei (8) 4, 408–416 (1948).

    Google Scholar 

  5. Weinstein, A., On surface waves. Can. J. Math. 1, 271–278 (1949).

    Google Scholar 

  6. Simoda, S., & M. Nagumo, Sur la solution bornée de l'équation aux dérivées partielles du type elliptique. Proc. Japan Academy 27, 334–339 (1951).

    Google Scholar 

  7. Yosida, K., A theorem of Liouville's type for meson equation. Proc. Japan Academy 27, 214–215 (1951).

    Google Scholar 

  8. Atkinson, F. V., On a theorem of K. Yosida. Proc. Japan Academy 28, 327–329 (1952).

    Google Scholar 

  9. Gilbarg, D., The Phragmén-Lindelöf theorem for elliptic partial differential equations. J. Rat. Mech. Anal. 1, 411–417 (1952).

    Google Scholar 

  10. Hopf, E., Remarks on the preceding paper by D. Gilbarg. J. Rat. Mech. Anal. 1, 418–424 (1952).

    Google Scholar 

  11. Huber, A., A theorem of Phragmén-Lindelöf type. Proc. Amer. Math. Soc. 4, 852–857 (1953).

    Google Scholar 

  12. Serrin, J., On the Phragmén-Lindelöf principle for elliptic differential equations. J. Rat. Mech. Anal. 3, 395–413 (1954).

    Google Scholar 

  13. Gilbarg, D., & J. Serrin, On isolated singularities of solutions of second order elliptic equations. J. d'Analyse Math. 4, 309–340 (1956).

    Google Scholar 

  14. Friedman, A., On two theorems of Phragmén-Lindelöf for linear elliptic and parabolic differential equations of the second order. Pacific J. Math. 7, 1563–1575 (1957).

    Google Scholar 

  15. Lax, P. D., A Phragmén-Lindelöf theorem in harmonic analysis and its application to some questions in the theory of elliptic equations. Comm. Pure and Appl. Math. 10, 361–389 (1957).

    Google Scholar 

  16. Meyers, N., & J. Serrin, The exterior Dirichlet problem for second order elliptic partial differential equations. J. Math. Mech. 9, 513–538 (1960).

    Google Scholar 

  17. Evgrafov, M. A., & I. A. Čegis, Generalization of the Phragmén-Lindelöf theorem on analytic functions to harmonic functions in space. Dokl. Akad. Nauk., SSSR 134, 259–262 (1960). -Soviet Math. Dokl. 1, 1047–1051 (1960).

    Google Scholar 

  18. Čegis, I. A., A Phragmén-Lindelöf type theorem for functions harmonic in a rectangular cylinder. Dokl. Akad. Nauk, SSSR 136, 556–559 (1961). -Soviet Math. Dokl. 2, 113–117 (1961).

    Google Scholar 

  19. Aršon, I. S., & M. A. Evgrafov, On the growth of functions which are harmonic within a cylinder and bounded together with their normal derivative on its surface. Dokl. Akad. Nauk, SSSR 142, 762–765 (1962). -Soviet Math. Dokl. 3, 140–142 (1962).

    Google Scholar 

  20. Jarmuhamedov, Š., On the growth of functions harmonic inside a cylinder and growing on the boundary with the normal derivative. Dokl. Akad. Nauk, SSSR 152, 567–569 (1963). -Soviet Math. Dokl. 4, 1380–1382 (1963).

    Google Scholar 

  21. Aršon, I. S., & M. A. Iglickii, On the decrease of harmonic functions in a cylinder. Dokl. Akad. Nauk, SSSR 152, 775–778 (1963). -Soviet Math. Dokl. 4, 1383–1387 (1963).

    Google Scholar 

  22. Agmon, S., & L. Nirenberg, Properties of solutions of ordinary differential equations in Banach space. Comm. Pure and Appl. Math. 16, 121–239 (1963).

    Google Scholar 

  23. Landis, E. M., Some questions on the qualitative theory of elliptic equations of the second order. Uspehi Mat. Nauk. 18, 3–62 (1963). -Russian Math. Surveys 18, 1 (1963).

    Google Scholar 

  24. Solomencev, E. D., A theorem of Phragmén-Lindel:of type for harmonic functions in space. Dokl. Akad. Nauk, SSSR 155, 765–766 (1964). -Soviet Math. Dokl. 5, 518–519 (1964).

    Google Scholar 

  25. Gerver, M. L., On the possible rate of decay of a solution of an elliptic equation. Dokl. Akad. Nauk, SSSR 156, 13–16 (1964). -Soviet Math. Dokl. 5, 586–590 (1964).

    Google Scholar 

  26. Habetha, K., Zum Phragmén-Lindelöfschen Prinzip bei partiellen Differentialgleichungen. Arch. der Math. 15, 324–331 (1964).

    Google Scholar 

  27. Herzog, J. O., Phragmén-Lindel:of theorems for second order quasi-linear elliptic partial differential equations. Proc. Amer. Math. Soc. 15, 721–728 (1964).

    Google Scholar 

  28. Kusano, T., On bounded solutions of exterior boundary value problems for linear and quasilinear elliptic differential equations. Japan J. Math. 35, 31–59 (1965).

    Google Scholar 

  29. Pucci, C., Un problema variazionale per i coefficienti di equazioni differenziali di tipo ellittico. Ann. Sculola Norm. Sup. Pisa 16, 159–172 (1962).

    Google Scholar 

  30. Pucci, C., Operatori ellittici estremanti. Ann. Mat. Pura Appl. 72, 141–170 (1966).

    Google Scholar 

  31. Hopf, E., Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus. Sitzber. Preuss. Akad. Wiss. Berlin 19, 147–152 (1927).

    Google Scholar 

  32. Hopf, E., A remark on linear elliptic differential equations of second order. Proc. Amer. Math. Soc. 3, 791–793 (1952).

    Google Scholar 

  33. Oleinik, O. A., On properties of solutions of some boundary value problems for equations of elliptic type. Mat. sbornik 30, 695–712 (1952) [Russian].

    Google Scholar 

  34. Pucci, C., Proprieta di massimo e minimo delle soluzioni di equazioni a derivate parziali del secondo ordine di tipo ellittico e parabolico. Rend. Accad. Naz. Lincei, Ser. 8, 23, (1957); 24, (1958).

  35. Serrin, J., On the Harnack inequality for linear elliptic equations. J. d'Analyse Math. 4, 292–308 (1956).

    Google Scholar 

  36. Výborný, R., Maximum principle for non-hyperbolic equations. Lecture series, Inst. Fluid Dynamics and Appl. Math., Univ. of Maryland, No. 42, Part I (1964).

  37. Bers, L., & L. Nirenberg, On linear and non-linear boundary value problems in the plane. Convegno Internazionale sulle Equazioni Derivate Parziali 1954, 141–167.

  38. Alexandrov, A. D., Investigation on the maximum principle. Izv. Vyss. Uceb. Zaved. Matematika 1958, 126–157; 1959, 3–12 and 16–32; 1960, 3–15 and 16–26; 1961, 3–20 [Russian].

  39. Alexandrov, A. D., Certain estimates for the Dirichlet problem. Dokl. Akad. Nauk, SSSR 134, 1001–1004 (1960).-Soviet Math. Dokl. 1, 1151–1154 (1961).

    Google Scholar 

  40. Pucci, C., Limitazioni per soluzioni di equazioni ellittiche. Ann. Mat. Pura Appl. (to appear).

  41. Oddson, J. K., Maximum principles and Phragmén-Lindelöf theorems for second order differential equations. Tech. Note BN-409, Inst. for Fluid Dynamics and Appl. Math., Univ. of Maryland 1965.

  42. Erdelyi, A. (editor), Higher transcendental functions, vol. 2. New York: McGraw-Hill 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. Cesari

Research in this paper was done in part while the author was a Canadian NATO Fellow at the University of Genoa, Genoa, Italy. Publication partially supported by the Air Force Office of Scientific Research under grant AFOSR 400-64 and the National Science Foundation under grant NSF-6P4921.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oddson, J.K. Phragmén-Lindelöf and comparison theorems for elliptic equations with mixed boundary conditions. Arch. Rational Mech. Anal. 26, 316–334 (1967). https://doi.org/10.1007/BF00281662

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00281662

Keywords

Navigation