Abstract
The existence of the Moore-Penrose inverse is discussed for elements of a *-regular ring R. A technique is developed for computing conditional and reflexive inverses for matrices in R2×2, which is then used to calculate the Moore-Penrose inverse for these matrices. Several applications are given, generalizing many of the classical results; in particular, we shall emphasize the cases of bordered matrices, Schur complements, block-rank formulae and EP elements.
Similar content being viewed by others
References
Meyer, C.D., Generalised inverses and ranks of block matrices, SIAM J. Appl. Math. 25, 597–602 (1973).
Rohde, C.A., Generalized inverses of partitioned matrices. SIAM J. Appl. Math. 13, 1033–1035 (1965).
Burns, F., D. Carlson, E. Haynsworth, & T. Markham, Generalized inverse formulas using the Schur-complement. SIAM J. Appl. Math. 26, 254–259 (1974).
Brown, B., & N.H. McCoy, The maximal regular ideal of a ring. Proc. Amer. Math. Soc. 1, 165–171 (1950).
Meyer, C.D., & R.J. Painter, Note on least square inverse for a matrix. J. Assoc. Comput. Math. 17, 110–112 (1970).
Meyer, C.D., Representations for (1) and (1, 2) inverses for partitioned matrices. Lin. Alg. Appl. 4, 221–232 (1971).
Drazin, M.P., Pseudo-inverses in associative rings and semigroups. Amer. Math. Monthly LXV, 506–514 (1958).
Prijatelj, N., & I. Vidav, On special *-regular rings. Michigan Math. J. 18, 213–221 (1971).
Rickart, C.E., Banach algebras with an adjoint operation. Ann. of Math. 47, 528–550 (1946).
Kaplansky, I., Any ortho-complemented complete modular lattice is a continuous geometry. Ann. of Math. (2), 61, 524–541 (1955).
Skornyakov, L.A., Complemented Modular Lattices and Regular Rings. London: Oliver & Boyd 1964.
Rao, C.R., & S.K. Mitra, Generalized Inverse of Matrices and its Applications. New York: John Wiley & Sons, Inc. 1971.
Greville, T.N.E., On the solution of the matrix equation xax=x. MCR Technical Summary Report # 1169, 1971.
Fitzgerald, D.G., On inverses of products of idempotents in regular semigroups. Austral. J. Math. 13, 335–337 (1972).
Gillman, L., & M. Jerison, Rings of Continuous Functions, p. 16. Princeton: Van Nostrand 1960.
Hartwig, R.E., 1–2 inverses and the invariance of ba + c. Lin. Alg. Appl. 11, 271–275 (1975).
scvon Neumann, J., On regular rings. Proc. Nat. Acad. Sci. 22, 707–713 (1936).
Boullion, T.L., & P.L. Odell, Generalized Inverse Matrices. New York: Wiley Interscience 1971.
Penrose, R., A generalized inverse for matrices. Proc. Cambridge Philos. Soc. 51, 406–413 (1958).
Pearl, M.H., Generalized inverses of matrices with entries taken from an arbitrary field. Lin. Alg. Appl. 1, 571–587 (1968).
Gabriel, R., g-Inverse of a matrix over arbitrary field, analytically-considered. J. Reine und Angew. Math. 244, 83–93 (1970).
Moore, E.H., General Analysis, Part 1. Mem. Amer. Philos. Soc. (1935).
Zlobec, S., An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix. SIAM Rev. 12, 132–134 (1970).
Robert, P., On the group inverse of a linear transformation. J. Math. Anal. Appl. 22, 658–669 (1968).
Hartwig, R.E., Rank factorization and g-inversion, to be published, J. Industrial Math.
Ayres, F., Theory and Problems of Matrices, p. 57. New York: McGraw-Hill 1962.
Carlson, D., E. Haynsworth, & T. Markham, A generalization of the Schur-complement by means of the Moore-Penrose inverse. SIAM J. Appl. Math. 26, 169–179 (1974).
Lewis, T.O., & T.G. Newmann, Pseudo-inverses of positive semi-definite matrices. SIAM J. Appl. Math. 16, 701–703 (1968).
McCoy, N.H., Rings and Ideals. Buffalo: Carus Monograph No. 8, 1948.
scde Bruyn, N.G., Inequalities concerning minors and eigenvalues. Nieuw Arch. Wiskunde 3IV, 18–35 (1956).
Grandmacher, F.R., The Theory of Matrices, vol. 1. New York: Chelsea 1960.
Kaplansky, I., Elementary divisors and modules. Trans. A.M.S. 66, 464–491 (1949).
Hartwig, R.E., Singular values and g-inverses of bordered matrices, to be published, SIAM J. Appl. Math.
Albert, A., Conditions for positive and nonnegative definiteness in terms of pseudo inverses. SIAM, J. Appl. Math. 17, 434–440 (1969).
Cline, R.E., Representations for the generalized inverse of a partitioned matrix. SIAM J. Appl. Math. 12, 588–600 (1964).
Greville, T.N., Note on the generalized inverse of a matrix product. SIAM Rev. 8, 518–521 (1966). Erratum, ibid 9, 249. Erratum, private communication.
Graybill, F.A., Introduction to Matrices with Applications in Statistics. Wadsworth: Belmont Cal., 1969.
de Polinac, C., Inverses generalisées de matrices bordées et de matrices peturbées, unpublished.
Pringle, R.M., A.A. Rayner, Expressions for generalized inverses of a bordered matrix with application to the theory of constrained linear models. SIAM. Rev. 12, 107–115 (1970).
Meyer, C.D., The Moore-Penrose inverse of a bordered matrix. Lin. Alg. Appl. 5, 375–382 (1972).
Arghiriade, E., Remarques sur l'inverse généralisée d'un produit de matrices. Atti Accad. Naz. Lincei Rend. Sci. Fis. Mat. 42, 621–625 (1967).
Schwerdtfeger, H., Introduction to Linear Algebra and the Theory of Matrices. Groningen: P. Noordhoff 1950.
Meyer, C.D., Some remarks on EPr matrices, and generalized inverses. Lin. Alg. Appl. 3, 275–278 (1970).
Baskett, T.S., & I.J. Katz, Theorems on products of EPr matrices. Lin. Alg. and Appl. 2, 87–103 (1969).
Katz, I.J., Remarks on two recent results in matrix theory. Lin. Alg. and Appl. 5, 109–112 (1972).
Berberian, S.K., The regular ring of a finite Baer *-ring. J. Alg. 23, 35–65 (1972).
Foulis, D.J., Relative inverses in Baer *-semigroups. Mich. Math. J. 10, 65–84 (1963).
McCoy, N.H., Generalized regular rings. Bull. Amer. Math. Soc. 45, 175–178 (1939).
Drazin, M.P., Proc. Edinb. Math. Soc. 9, 157–165 (1958).
Barnes, W.E., On the Γ-rings of Nobusawa. Pac. J. Math. 18, 411–422 (1966).
scBen Israel, A., & T.N. Greville, Generalized Inverses, Theory and Applications. New York: John Wiley & Sons, Inc., N.Y. 1974.
Author information
Authors and Affiliations
Additional information
Communicated by M. Kac
Rights and permissions
About this article
Cite this article
Hartwig, R.E. Block generalized inverses. Arch. Rational Mech. Anal. 61, 197–251 (1976). https://doi.org/10.1007/BF00281485
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00281485