Advertisement

Water, Air, and Soil Pollution

, Volume 38, Issue 3–4, pp 345–363 | Cite as

Chemical deposition to a high elevation red spruce forest

  • Stephen F. Mueller
  • Frances P. Weatherford
Article
  • 19 Downloads

Abstract

A preliminary analysis of O3, SO2, SO inf4 sup2− , and total NO inf3 sup− deposition to the red spruce forest on the summit of Whitetop Mountain, Virginia, illustrates uncertainties in analysis methodologies, establishes the relative importance of three deposition pathways, and suggests areas for further research. Results are presented here for an analysis of the dry, wet (precipitation), and cloud water deposition pathways for the four chemical species during a 26-day period in April and May 1986. Dry and cloud water depositions are estimated using available models along with air and cloud water chemistry measurements made at the summit. For water soluble species, depositions by precipitation and cloud interception are found to be comparable in magnitude, while dry deposition appears to be about an order of magnitude less. High levels of atmospheric O3 lead to a large estimate of 03 deposition (on a mass flux basis) when compared to the estimated deposition of gaseous SO2. This is in spite of the fact that computed SO2 dry deposition velocities exceed those for O3. Model uncertainties are large for both dry deposition velocity and cloud water flux computations, and some bias in computations probably exists because of the application of the models to a complex terrain situation. Field evaluation of the cloud water deposition model is of greatest priority because of the apparent relative importance of that deposition pathway.

Keywords

Complex Terrain Cloud Water Flux Computation Soluble Species Great Priority 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cadle, S. H., Daschand, J. M., and Mulona, P. A.: 1985, Atmos Environ. 19, 1819.Google Scholar
  2. Calvert, J., Galloway, J. N., Hales, J. M., Hidy, G. M., Jacobson, J., Lazrus, A., Miller, J., Mohnen, V., and Uman, M. F. (Committee on Atmospheric Transport and Chemical Transformation in Acid Precipitation, National Research Council): 1983, Acid Deposition — Atmospheric Processes in North America, National Academy Press, Washington, D. C., 375 pp.Google Scholar
  3. Forrest, V., Garber, R., and Newman, L.: 1979, Atmos. Environ. 13, 287.Google Scholar
  4. Garber, R. W., Malo, J. E., Mueller, S. F., Olszyna, K. J., Valente, R. J., and Weatherford, F. P.: 1987, Whitetop Mountain/Mount Rogers Cloud Chemistry Research Project-Data Summary for Intensive Field Studies — Spring 1986, TVA Report TVA/ONRED/AWR-87/17, 42 pp.Google Scholar
  5. Hales, J. M. and Sutter, S. L.: 1973, Atmos. Environ. 7, 1977.Google Scholar
  6. Hicks, B. B., Baldocchi, D. D., Hosker, R. P., Jr., Hutchison, B. A., Matt, D. R., McMillen, R. T., and Satterfield, L. C.: 1985, On the Use of Monitored Air Concentrations to Infer Dry Deposition, NOAA Technical Memorandum ERL ARL-141, 65 pp.Google Scholar
  7. Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, R. P. Jr., and Matt, D. R.: 1988, Water, Air and Soil Pollut., in press.Google Scholar
  8. Hicks, B. B. and Wesely, M. L.: 1980, in D. S. Shriner, C. R. Richmond, and S. E. Lindberg (eds.), Atmos. Sulfur Deposition, Ann Arbor Science Publisher, Ann Arbor, 568 pp.Google Scholar
  9. Lovett, G. M.: 1984, Atmos. Environ. 18, 361.Google Scholar
  10. Lovett, G. M. and Reiners, W. A.: 1986, Tellus 38B, 319.Google Scholar
  11. Matt, D. R., McMillen, R. T., Womack, J. D., and Hicks, B. B.: 1988, Water, Air, and Soil Pollut., in press.Google Scholar
  12. Meyers, T.: 1987, private communication.Google Scholar
  13. Mueller, S. F., Valente, R. J., and Weatherford, F. P.: 1987, Whitetop Mountain/Mount Rogers High Elevation Forest Decline Research Project-Data Summary for Routine Monitoring Operations — Second Quarter 1986, TVA report TVA/ONRED/AWR-88/1, 225 pp.Google Scholar
  14. Nieburger, M. and Chien, C. W.: 1960, ‘Computations of the Growth of Cloud Drops by Condensation Using an Electronic Digital Computer’, Physics of Precipitation, AGU Monograph 5, American Geophysical Union, p. 191.Google Scholar
  15. Wesely, M. L., Cook, D. R., and Hart, R. L.: 1983, Boundary-Layer Meteorol. 27, 237.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Stephen F. Mueller
    • 1
  • Frances P. Weatherford
    • 1
  1. 1.Tennessee Valley AuthorityMuscle ShoalsUSA

Personalised recommendations