Skip to main content
Log in

On the stability of integral equations of the first kind with logarithmic kernels

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

This paper discusses the stability of the Galerkin method for a class of boundary integral equations of the first kind. These integral equations arise in acoustics, elasticity, and hydrodynamics, and the kernels of the principal parts of the corresponding integral operators all have logarithmic singularities. It is shown that an optimal choice of the mesh size can be made in the numerical computation so that one will obtain an optimal rate of convergence of the approximate solutions. The results here are consistent with those obtained by the Tikhonov regularization procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexits, G., Konvergenzprobleme der Orthogonalreihen. Berlin, Deutscher Verl. Wiss. 1960.

    Google Scholar 

  2. Babuska, I. & A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method. In the Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, edited by A. K. Aziz. New York, Academic Press 1972.

    Google Scholar 

  3. Fichera, G., Linear elliptic equations of higher order in two independent variables and singular integral equations. Proc. of Conf. on Part. Diff. Equ. and Continuum Mech. Madison, Wisconsin, University of Wisconsin Press 1961

    Google Scholar 

  4. Fichera, G. & P. Ricci, The single layer potential approach in the theory of boundary value problems for elliptic equations. In: Lecture Notes in Mathematics, 561, 39–50. Berlin-Heidelberg-New York, Springer 1976.

  5. Hildebrandt, S. & E. Wienholtz, Constructive proofs of representation theorems in separable Hilbert space. Comm. Pure Appl. Math. 17, 369–373 (1964).

    Google Scholar 

  6. Hsiao, G. C. & R. C. Maccamy, Solution of boundary value problems by integral equations of the first kind, SIAM Rev. 15, 687–705 (1973).

    Google Scholar 

  7. Hsiao, G. C. & W. L. Wendland, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449–481 (1977).

    Google Scholar 

  8. Hsiao, G. C., Singular perturbation of an exterior Dirichlet problem, SIAM J. Math. Anal. 9, 160–184 (1978).

    Google Scholar 

  9. Hsiao, G. C. & G. F. Roach, On the relationship between boundary value problems, J. Math. Anal. Appl. 68, 557–566 (1979).

    Google Scholar 

  10. Hsiao, G. C., P. Kopp & W. L. Wendland, A Galerkin collocation method for some integral equations of the first kind. Computing 25, 89–130 (1980).

    Google Scholar 

  11. Hsiao, G. C. & W. L. Wendland, The Aubin-Nitsche lemma for integral equations. J. of Integral Equ., 3, 299–315 (1981).

    Google Scholar 

  12. Hsiao, G. C. & W. L. Wendland, Super-approximation for boundary integral methods. Proc. of the 4th IMACS Conf. on Computer Mem. for Part. Diff. Equ., 200–205, (1981).

  13. Hsiao, G. C., P. Kopp & W. L. Wendland, Some applications of a Galerkincollocation method for integral equations of the first kind. Math. Meth. in the Appl. Sci. 6, 280–325 (1984).

    Google Scholar 

  14. Hsiao, G. C. & R. C. Maccamy, Singular perturbations for the two-dimensional slow viscous flow problem. In: Lecture Notes in Mathematics, 942, 229–244. Berlin-Heidelberg-New York, Springer 1982.

  15. Lions, J. L. & E. Magenes, Non-Homogeneous Boundary Value Problems and Application. I. Berlin-Heidelberg-New York, Springer 1972.

    Google Scholar 

  16. MacCamy, R. C., On a class of two-dimensional Stokes-flows. Arch. Rational Mech. and Anal. 21, 256–258 (1966).

    Google Scholar 

  17. Michlin, S. G., Variationsmethoden der Mathematischen Physik. Berlin: Akademie-Verlag 1962.

    Google Scholar 

  18. Nashed, M. Z., Approximate regularized solutions to improperly posed linear and operator equations. Lecture Notes in Mathematics, 430, 289-332. Berlin-Heidelberg-New York, Springer 1974.

  19. Natterer, F., The finite element method for ill-posed problems. R.A.I.R.O. Analyse Numerique, 11, 271–278 (1977).

    Google Scholar 

  20. Natterer, F., Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math. 28, 329–341 (1977).

    Google Scholar 

  21. Ricci, P., Sui potenziale di semplico strato per le equazioni ellittiche di ordine superiore in due variabili. Rend. Mat. 7, 1–39 (1974).

    Google Scholar 

  22. Richter, G. R., Numerical solution of integral equations of the first kind with nonsmooth kernels. SIAM J. Numer. Anal. 17, 511–522 (1978).

    Google Scholar 

  23. Stummel, F., Rand und- Eigenwertaufgaben in Sobolevschen Räumen. Lecture Notes in Mathematics, 102. Berlin-Heidelberg-New York, Springer 1969.

  24. Tikhonov, A. N. & V. Y. Arsenin, Solutions of Ill-posed Problems. New York, John Wiley & Sons 1977.

    Google Scholar 

  25. Vainikko, G., On the question of convergence of Galerkin's method. Tartu Rükl. Ul. Toim. 177, 148–152 (1965).

    Google Scholar 

  26. Wendland, W. L., Elliptic Systems in the Plane, London, Pitman 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Fichera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, G.C. On the stability of integral equations of the first kind with logarithmic kernels. Arch. Rational Mech. Anal. 94, 179–192 (1986). https://doi.org/10.1007/BF00280433

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00280433

Keywords

Navigation