Skip to main content
Log in

Excess histidine enzymes cause AICAR-independent filamentation in Escherichia coli

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

High-level expression of the hisHAFI genes in Escherichia coli, cloned under the control of an IPTG-inducible promoter, caused filamentation, as previously reported in Salmonella typhimurium. We speculated that this filamentation might be produced by an action of the HisH and HisF enzymes on their product AICAR (amino-imidazole carboxamide riboside 5′-phosphate), a histidine by-product and normal purine precursor, possibly by favouring the formation of ZTP, the triphosphate derivative of AICAR. However, filamentation occured even in the absence of carbon flow through the histidine and purine pathways, as observed in a hisG purF strain lacking the first enzyme in each pathway. Filamentation thus does not require either the normal substrate or products of the overproduced histidine enzymes and must reflect another activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antón DN (1978) Genetic control of defective cell shape and osmotic-sensitivity in a mutant of Salmonella typhimurium. Mot Gen Genet 160:277–286

    Google Scholar 

  • Antón DN (1979) Positive selection of mutants with cell envelope defects of a Salmonella typhimurium strain hypersensitive to the products of genes hisF and hisH. J Bacteriol 137:1271–1281

    Google Scholar 

  • Antón DN, Orce LV (1976) Envelope mutation promoting autolysis in Salmonella typhimurium. Mol Gen Genet 144:97–105

    Google Scholar 

  • Begg KJ, Spratt BG, Donachie WD (1986) Interaction between membrane proteins PBP3 and RodA is required for normal cell shape and division in Escherichia coli. J Bacteriol 167:1004–1008

    Google Scholar 

  • Begg KJ, Takasuga A, Edwards DH, Dewar SJ, Spratt BG, Adachi H, Ohta T, Matsuzawa H, Donachie WD (1990) The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide. J Bacteriol 172:6697–6708

    Google Scholar 

  • Bochner BR, Ames BN (1982) ZTP (5-amino 4-imidazole carboxamide riboside 5′-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency. Cell 29:929–937

    Google Scholar 

  • Brown EA, D'Ari R, Newman EB (1990) A relationship between L-serine degradation and methionine biosynthesis in Escherichia coli K12. J Gen Microbiol 136:1017–1023

    Google Scholar 

  • Burton P, Holland IB (1983) Two pathways of division inhibition in UV-irradiated E. coli. Mot Gen Genet 190:309–314

    Google Scholar 

  • Carlomagno MS, Chiariotti L, Alifano P, Nappo AG, Bruni CB (1988) Structure and function of the Salmonella typhimurium and Escherichia coli K-12 histidine operons. J Mot Biol 203:585–606

    Google Scholar 

  • D'Ari R, Huisman O (1983) Novel mechanism of cell division inhibition associated with the SOS response in Escherichia coli. J Bacteriol 156:243–250

    Google Scholar 

  • Flores A, Fox M, Casadesus J (1993) The pleiotropic effects of Salmonella typhimurium his overexpression do not involve AICAR-induced mutagenesis. Mot Gen Genet 240:360–364

    Google Scholar 

  • Fox M, Frandsen N, D'Ari R (1993) AICAR is not an endogenous mutagen in Escherichia coli. Mot Gen Genet 240:355–359

    Google Scholar 

  • Geiger JR, Speyer JF (1977) A conditional antimutator in E. coli. Mot Gen Genet 153:87–97

    Google Scholar 

  • Gibert I, Casadesus J (1990) sulA-independent division inhibition in His-constitutive strains of Salmonella typhimurium. FEMS Microbiol Letters 69:205–210

    Google Scholar 

  • Grisolia V, Riccio A, Bruni CB (1983) Structure and function of the internal promoter (hisBp) of the Escherichia coli K-12 histidine operon. J Bacteriol 155:1288–1296

    Google Scholar 

  • Hiraga S, Niki H, Ogura T, Ichinose C, Mori H, Ezaki B, Jaffé A (1989) Chromosome partitioning in Escherichia coli: novel mutants producing anucleate cells. J Bacteriol 171:1496–1505

    Google Scholar 

  • Hoekstra WPM, Vis HG (1977) Characterization of the E. coli K12 strain AB1157 as impaired in guanine/xanthine metabolism. Antonia Van Leeuwenhoek 43:199–204

    Google Scholar 

  • Houlberg U, Jensen KF (1983) Role of hypoxanthine and guanine in regulation of Salmonella typhimurium pur gene expression. J Bacteriol 153:837–845

    Google Scholar 

  • Huisman O, D'Ari R (1981) An inducible DNA replication-cell division coupling mechanism in E. coli. Nature 290:797–799

    Google Scholar 

  • Huisman O, D'Ari R, Gottesman S (1984) Cell division control in Escherichia coli: specific induction of the SOS function SfiA protein is sufficient to block septation. Proc Natl Acad Sci USA 81:4490–4494

    Google Scholar 

  • Jaffé A, D'Ari R, Norris V (1986) SOS-independent coupling between DNA replication and cell division in Escherichia coli. J Bacteriol 165:66–71

    Google Scholar 

  • Kepes F, D'Ari R (1987) Involvement of FtsZ protein in shift-upinduced division delay in Escherichia coli. J Bacteriol 169:4036–4040

    Google Scholar 

  • Lin RT, D'Ari R, Newman EB (1990) The leucine regulon of Escherichia coli K-12: a mutation in rblA alters expression of L-leucine-dependent metabolic operons. J Bacteriol 172:4529–4535

    Google Scholar 

  • Markiewicz Z, Broome-Smith JK, Schwarz U, Spratt BG (1982) Spherical E. coli due to elevated levels of D-alanine carboxypeptidase. Nature 297:702–704

    Google Scholar 

  • Matsuhashi M, Wachi M, Ishino F (1990) Machinery for cell growth and division: penicillin-binding proteins and other proteins. Res Microbiol 141:89–103

    Google Scholar 

  • Meng LM, Nygaard P (1990) Identification of hypoxanthine and guanine as the corepressors for the purine regulon genes of Escherichia coli. Mot Microbiol 4:2187–2192

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Murray ML, Hartman PE (1972) Overproduction of hisH and hisF gene products leads to inhibition of cell division in Salmonella. Can J Microbiol 18:671–681

    Google Scholar 

  • Murray V (1987) 5-Amino-4-imidazolecarboxamide is a mutagen in E. coli. Mutat Res 190:89–94

    Google Scholar 

  • Neuhard J, Nygaard P (1987) Purines and Pyrimidines. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, DC, pp 445–473

    Google Scholar 

  • Niki H, Jaffé A, Imamura R, Ogura T, Hiraga S (1991) The new gene mukB-codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J 10:183–193

    Google Scholar 

  • Patzer J (1973) Suppression of the defect in the histidine regulatory mutants in Salmonella typhimurium. Acta Microbiol Polonica, 5:3–14

    Google Scholar 

  • Patzer J (1974) Defective cell separation in the smoA mutant. Acta Microbiol Polonica 6:173–182

    Google Scholar 

  • Pisabarro AG, Prats R, Vázquez D, Rodríguez-Tébar A (1986) Activity of penicillin-binding protein 3 from Escherichia coli. J Bacteriol 168:199–206

    Google Scholar 

  • Pochet S, D'Ari R (1990) Synthesis and enzymatic polymerisation of 5-amino-1-(2′-deoxy-β-d-ribofuranosyl)imidazole-4-carbox-amide-5′-triphosphate. Nucleic Acids Res 18:7127–7131

    Google Scholar 

  • Rieder G, Kleiner D (1993) Clarification of the last blind spot in the histidine biosynthesis — function of hisF and hisH gene products. Bioengineering 9:30

    Google Scholar 

  • Rohlman CE, Matthews RG (1990) Role of purine biosynthetic intermediates in response to folate stress in Escherichia coli. J Bacteriol 172:7200–7210

    Google Scholar 

  • Rolfes RJ, Zalkin H (1991) Purification of the Escherichia coli purine regulon repressor and identification of corepressors. J Bacteriol 172:5637–5642

    Google Scholar 

  • Roth JR, Hartman PE (1965) Heterogeneity in P22 transducing particles. Virology 27:297–307

    Google Scholar 

  • Sabina RL, Holmes EW, Becker MA (1984) The enzymatic synthesis of 5-amino-4-imidazolecarboxamide riboside triphosphate (ZTP). Science 223:1193–1195

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sloan JB, Urban JE (1976) Growth response of Escherichia coli to nutritional shift up. J Bacteriol 128:302–308

    Google Scholar 

  • Spratt BG (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci USA 72:2999–3003

    Google Scholar 

  • Taschner PEM, Huls PG, Pas E, Woldringh CL (1988) Division behavior and shape changes in isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli during temperature shift experiments. J Bacteriol 170:1533–1540

    Google Scholar 

  • Tsui H-CT, Arps PJ, Connolly DM, Winkler ME (1991) Absence of hisT-mediated tRNA pseudouridylation results in a uracil requirement that interferes with Escherichia coli K-12 cell division. J Bacteriol 173:7395–7400

    Google Scholar 

  • Wachi M, Matsuhashi M (1989) Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J Bacteriol 171:3123–3127

    Google Scholar 

  • Wachi M, Doi M, Tamaki S, Park W, Nakajima-Iijima S, Matsuhashi M (1987) Mutant isolation and molecular cloning of mre genes, which determine cell shape, sensitivity to mecillinam, and amount of penicillin-binding proteins in Escherichia coli. J Bacteriol 169:4935–4940

    Google Scholar 

  • Wientjes FB, Nanninga N (1989) Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge. J Bacteriol 171:3412–3419

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Devoret

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frandsen, N., D'Ari, R. Excess histidine enzymes cause AICAR-independent filamentation in Escherichia coli . Molec. Gen. Genet. 240, 348–354 (1993). https://doi.org/10.1007/BF00280385

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00280385

Key words

Navigation