Skip to main content

Advertisement

Log in

Cloning and characterization of the scrA gene encoding the sucrose-specific Enzyme II of the phosphotransferase system from Staphylococcus xylosus

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

By insertional mutagenesis with the staphylococcal transposon Tn551, mutants of Staphylococcus xylosus were isolated that were unable to utilize sucrose. One of these was found to be deficient in sucrose uptake. The genomic region containing this sucrose uptake gene of Staphylococcus xylosus (scrA) was cloned in Staphylococcus carnosus. The scrA gene was further localized to a 4.4 kb DNA fragment by complementation of the sucrose transport-deficient S. xylosus mutant. The DNA sequence analysis of the scrA region revealed three open reading frames, one of which encodes a protein of 480 amino acids (51.335 kDa) with significant similarity to sucrose-specific Enzymes 11 of phosphoenolpyruvate-dependent carbohydrate phosphotransferase systems (PTS). A protein with an apparent molecular weight of 50 kDa was obtained in Escherichia coli by expression of scrA with the bacteriophage T7 RNA polymerase promoter system. Transcriptional start sites of the scrA gene were localized by primer extension analysis to positions 46 and 49 nucleotides upstream of the scrA start codon. No additional sucrose utilization genes are encoded close to scrA on the S. xylosus chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustin J, Rosenstein R, Wieland B, Schneider U, Schnell N, Engelke G, Entian K-D, Götz F (1992) Genetic analysis of epidermin biosynthetic genes and epidermin-negative mutants of Staphylococcus epidermidis. Eur J Biochem 204:1149–1154

    Google Scholar 

  • Aulkemeyer P, Ebner R, Heilenmann G, Jahreis K, Schmid K, Wrieden S, Lengeler JW (1991) Molecular analysis of two fructokinases involved in sucrose metabolism of enteric bacteria. Mol Microbiol 5:2913–2922

    Google Scholar 

  • Blatch GL, Scholle RR, Woods DR (1990) Nucleotide sequence and analysis of the Vibrio alginolyticus sucrose uptake-encoding region. Gene 5:17–23

    Google Scholar 

  • Blatch GL, Woods DR (1991) Nucleotide sequence and analysis of the Vibrio alginolyticus scr repressor-encoding gene (scrR). Gene 101:45–50

    Google Scholar 

  • Bockmann J, Heuel H, Lengeler JW (1992) Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization in Escherichia coli EC3132. Mol Gen Genet 235:22–32

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Brückner R (1992) A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122:187–192

    Google Scholar 

  • Brückner R, Wagner E, Götz F (1993) Characterization of a sucrase gene from Staphylococcus xylosus. J Bacteriol 175:851–857

    Google Scholar 

  • Débarbouillé M, Arnaud M, Fouet A, Klier A, Rapoport G (1990) The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172:3966–3973

    Google Scholar 

  • Ebner R, Lengeler JW (1988) DNA sequence of the gene scrA encoding the sucrose transport protein Enzyme IIScr of the phosphotransferase system from enteric bacteria: homology of the Enzyme IIScr and Enzyme IIBgl proteins. Mol Microbiol 2:9–17

    Google Scholar 

  • Fouet A, Arnaud M, Klier A, Rapoport G (1987) Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. Proc Natl Acad Sci USA 84:8773–8777

    Google Scholar 

  • Gibson TJ (1984) Studies on the Epstein-Barr virus genome. Ph D thesis, Cambridge University, England

    Google Scholar 

  • Gonzy-Tréboul G, de Waard JH, Zagorec M, Postma PW (1991) The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains. Mol Microbiol 5:1241–1249

    Google Scholar 

  • Götz F, Schumacher B (1987) Improvements of protoplast transformation in Staphylococcus carnosus. FEMS Microbiol Lett 40:285–288

    Google Scholar 

  • Götz F, Zabielski J, Philipson L, Lindberg M (1983) DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid p1258 from Staphylococcus aureus. Plasmid 9:126–137

    Google Scholar 

  • Gralla JD (1991) Transcriptional control-lessons from an E. coli promoter data base. Cell 66:415–418

    Google Scholar 

  • Hardesty C, Ferran C, DiRienzo JM (1991) Plasmid-mediated sucrose metabolism in Escherichia coli: characterization of scr Y, the structural gene for a phosphoenolpyruvate-dependent sucrose phosphotransferase system outer membrane porin. J Bacteriol 173:449–456

    Google Scholar 

  • Hawley DK, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    Google Scholar 

  • Hayakawa M, Aoki H, Kuramitsu HK (1986) Isolation and characterization of the sucrose 6-phosphate hydrolase gene from Streptococcus mutans. Infec Immun 53:582–586

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Lengeler JW, Mayer RJ, Schmid K (1982) Phosphoenolpyruvate-dependent phosphotransferase system enzyme III and plasmid-encoded sucrose transport in Escherichia coli K-12. J Bacteriol 151:468–471

    Google Scholar 

  • Lengeler JW, Bockmann J, Heuel H, Titgemeyer F (1992) The enzymes II of the PTS as carbohydrate transport systems: what the evolutionary studies tell us of their structure and function. In: Quagliariello E, Palmieri F (eds) Molecular mechanisms of transport. Elsevier Science Publishers, Amsterdam, pp 77–85

    Google Scholar 

  • Lepesant J-A, Kunst F, Lepesant-Kejzlarová J (1972) Chromosomal location of mutations affecting sucrose metabolism in Bacillus Marburg. Mol Gen Genet 118:135–160

    Google Scholar 

  • Macrina FL, Jones KR, Alpert C-A, Chassy BM, Michalek SM (1991) Repeated DNA sequence involved in mutations affecting transport of sucrose into Streptococcus mutans V403 via the phosphoenolpyruvate phosphotransferase system. Infect Immun 59:1535–1543

    Google Scholar 

  • Murphy E (1989) Transposable elements in Gram-positive bacteria. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 269–288

    Google Scholar 

  • Neidhardt FC, Blach PL, Smith DF (1974) Culture medium for Enterobacteria. J Bacteriol 119:736–747

    Google Scholar 

  • Novick RP (1974) Studies on plasmid replication. III. Isolation and characterization of replication-defective mutants. Mol Gen Genet 135:131–147

    Google Scholar 

  • Novick RP, Edelman I, Schwesinger MD, Gruss AD, Swanson EC, Pattee PA (1979) Genetic translocation in Staphylococcus aureus. Proc Natl Acad Sci 76:400–404

    Google Scholar 

  • Postma PW, Lengeler JW (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269

    Google Scholar 

  • Rauch PJG, de Vos WM (1992) Transcriptional regulation of the Tn5276-located Lactococcus lactis sucrose operon and characterization of the sacA gene encoding sucrose-6-phosphate hydrolase. Gene 121:55–61

    Google Scholar 

  • Rosenstein R, Peschel A, Wieland B, Götz F (1992) Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J Bacteriol 174:3676–3683

    Google Scholar 

  • Russel M, Model P (1984) Replacement of the fip gene of Escherichia coli by an inactive gene cloned on a plasmid. J Bacteriol 159:1034–1039

    Google Scholar 

  • Saier MIL, Reizer J (1992) Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. J Bacteriol 174:1433–1438

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sato Y, Poy F, Jacobson GR, Kuramitsu HK (1989) Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J Bacteriol 171:263–271

    Google Scholar 

  • Schleifer KH, Fischer U (1982) Description of a new species of the genus Staphylococcus: Staphylococcus carnosus. Int J Syst Bacteriol 32:153–156

    Google Scholar 

  • Schleifer KH, Kloos WE (1975) Isolation and characterization of Staphylococci from human skin. I. Amended descriptions of Staphylococcus epidermidis and Staphylococcus saprophyticus and descriptions of three new species: Staphylococcus cohnii, Staphylococcus haemolyticus and Staphylococcus xylosus. Int J Syst Bacteriol 25:50–61

    Google Scholar 

  • Schmid K, Schupfner M, Schmitt R (1982) Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12. J Bacteriol 151:68–76

    Google Scholar 

  • Schmid K, Ebner R, Altenbucher J, Schmitt R, Lengeler JW (1988) Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400. Mol Microbiol 2:1–8

    Google Scholar 

  • Schmid K, Ebner R, Jahreis K, Lengeler JW, Titgemeyer F (1991) A sugar-specific porin, ScrY, is involved in sucrose uptake in enteric bacteria. Mol Microbiol 5:941–950

    Google Scholar 

  • Scholle RR, Coyne VE, Maharaj R, Robb FT, Woods DR (1987) Expression and regulation of a Vibrio alginolyticus sucrose utilization system cloned in Escherichia coli. J Bacteriol 169:2685–2690

    Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Nat Acad Sci USA 71:1342–1346

    Google Scholar 

  • Sizemore C, Buchner E, Rygus T, Witke C, Götz F, Hillen W (1991) Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon. Mol Gen Genet 227:377–384

    Google Scholar 

  • Sprenger A, Lengeler JW (1988) Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12. J Gen Microbiol 134:1635–1644

    Google Scholar 

  • St Martin EJ, Wittenberger CL (1979) Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. Infect Immun 24:865–868

    Google Scholar 

  • Sutrina SL, Reddy P, Saier MH Jr, Reizer J (1990) The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265:18581–18589

    Google Scholar 

  • Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 82:1074–1078

    Google Scholar 

  • Thompson J, Chassy BM (1981) Uptake and metabolism of sucrose by Streptococcus lactis. J Bacteriol 147:543–551

    Google Scholar 

  • Tinoco I, Jr, Borer PN, Dengler B, Levine MD, Uhlenbeck OC, Crothers DM, Gralla J (1973) Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp 18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Lengeler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, E., Götz, F. & Brückner, R. Cloning and characterization of the scrA gene encoding the sucrose-specific Enzyme II of the phosphotransferase system from Staphylococcus xylosus . Molec. Gen. Genet. 241, 33–41 (1993). https://doi.org/10.1007/BF00280198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00280198

Key words

Navigation