Skip to main content
Log in

Excitation of paramecium

A model analysis

Journal of Mathematical Biology Aims and scope Submit manuscript

Cite this article

Summary

In a model analysis the excitation mechanism of Paramecium is simulated. The model is based on a specific Ca channel mechanism located in the ciliary part of the membrane. The Ca2+ permeability depends on transmembrane voltage and the binding of cations to channel subunits. Renormalization of intraciliary [Ca2+] following excitation is mediated by active Ca2+ extrusion and diffusion between cilia and cell body. Including the kinetic equations of a. K+ transport system we get a complete description of ionic fluxes and current-voltage relations. The electric responses to injected current pulses of different duration can be simulated as well as voltage-clamp measurements, after introduction of an electrogenic Ca2+ transport system. Allowing Ba2+ to substitute for Ca2+ with slightly different permeability and binding rates, the features of all-or-none action potentials and repetitive firing are reflected by the model. Simulation of membrane responses to varying external [K+] and [Ca2+] leads us to require some additional, slowly changing mechanism to account for processes like slow inactivation and recovery. The possible existence of negative surface charges is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adam, G.: Ionenstrom nach einem depolarisierenden Sprung im Membranpotential. Z.f. Naturforsch. 23b, 181–197 (1968)

    Google Scholar 

  • Baker, P. F.: The regulation of intracellular calcium. In: Calcium in biological systems (C.J. Duncan, ed.), pp. 67–88, Cambridge: Univ. Press, 1976

    Google Scholar 

  • Barlow, C. A. Jr.: The electrical double layer. In: Physical chemistry, an advanced treatise. Vol. 9A Electrochemistry (H. Eyring, D. Henderson, W. Jost, eds.), pp. 167–246, New York: Academic Press, 1970

    Google Scholar 

  • Bass, L., McIlroy, D. K.: Enzyme activities in polarized cell membranes. Biophys. J. 8, 99–109 (1968)

    Google Scholar 

  • Brehm, P., Eckert, R.: Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 1203–1206 (1978)

    Google Scholar 

  • Bretag, A.H., Davis, B. R., Kerr, D. I. B.: Potassium conductance model related to an interactive subunit membrane. J. Memb. Biol. 16, 363–380 (1974)

    Google Scholar 

  • Dunlap, K.: Localization of calcium channels in Paramecium caudatum. J. Physiol. (Lond.) 271, 119–133 (1977)

    Google Scholar 

  • Eckert, R.: Bioelectric control of ciliary activity. Science 176, 473–481 (1972)

    Google Scholar 

  • Eckert, R., Naitoh, Y., Machemer, H.: Calcium in the bioelectric and motor functions of Paramecium. In: Calcium in biological systems (C. J. Duncan, ed.), pp. 233–255, Cambridge: Univ. Press, 1976

    Google Scholar 

  • Gilbert, D. L., Ehrenstein, G.: Effect of divalent cations on potassium conductance of squid axons: determination of surface charge. Biophys. J. 9, 447–463 (1969)

    Google Scholar 

  • Hildebrand, E.: Bedeutung der Konkurrenz zwischen Calcium und anderen Kationen für die Steuerung der Leitfähigkeit sensorischer Membranen. Verh. Dtsch. Zool. Ges. 1974, 24–28 (1975)

    Google Scholar 

  • Hildebrand, E.: Ciliary reversal in Paramecium: Temperature dependence of K+-induced excitability decrease and of recovery. J. comp. Physiol. 127, 39–44 (1978)

    Google Scholar 

  • Hildebrand, E., Dryl, S.: Significance of Ca2+ and K+ ions for the excitation of the protozoan membrane. Bioelectrochem. Bioenerg. 3, 543–544 (1976)

    Google Scholar 

  • Hill, T. L.: Studies in irreversible thermodynamics. J. theor. Biol. 10, 442–459 (1966)

    Google Scholar 

  • Hille, B., Woodhull, A. M., Shapiro, B. I.: Negative surface charge near sodium channel of nerve: divalent ions, monovalent ions, and pH. Phil. Trans. R. Soc. Lond. B 270, 301–318 (1975)

    Google Scholar 

  • Hodgkin, A. L.: Ionic movements and electrical activity in giant nerve fibres. Proc. Roy. Soc. B. 148, 1–37 (1958)

    Google Scholar 

  • Jahn, T. L.: The mechanism of ciliary movement. II. Ion antagonism and ciliary reversal. J. cell. comp. Physiol. 60, 217–228 (1962)

    Google Scholar 

  • Jennings, H. S.: Studies on reactions to stimuli in unicellular organisms. II. The mechanism of motor reactions of Paramecium. Am. J. Physiol. 2, 311–341 (1899)

    Google Scholar 

  • Machemer, H., Eckert, R.: Ciliary frequency and orientational responses to clamped voltage steps in Paramecium. J. comp. Physiol. 104, 247–260 (1975)

    Google Scholar 

  • McIlroy, D. K.: A mathematical model of the nerve impulse at the molecular level. Math. Biosci. 7, 313–328 (1970)

    Google Scholar 

  • McLaughlin, S., Harary, H.: Phospholipid flip-flop and the distribution of surface charges in excitable membranes. Biophys. J. 14, 200–208 (1974)

    Google Scholar 

  • Meech, R. W.: Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp. Biochem. Physiol. 42A, 493–499 (1972)

    Google Scholar 

  • Naitoh, Y.: Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J. gen. Physiol. 51, 85–103 (1968)

    Google Scholar 

  • Naitoh, Y., Eckert, R.: Electrical properties of Paramecium caudatum: All-or-none electrogenesis. Z. vergl. Physiol. 61, 453–472 (1968)

    Google Scholar 

  • Naitoh, Y., Kaneko, H.: Reactivated triton-extracted models of Paramecium: Modification of ciliary movement by calcium ions. Science 176, 523–524 (1972)

    Google Scholar 

  • Naitoh, Y., Eckert, R., Friedman, K.: A regenerative calcium response in Paramecium. J. exp. Biol. 56, 667–681 (1972)

    Google Scholar 

  • Nonner, W., Rojas, E., Stämpfli, R.: Displacement currents in the node of Ranvier. Pflügers Arch. 354, 1–18 (1975)

    Google Scholar 

  • Oertel, D., Schein, S. J., Kung, C.: Separation of membrane currents using a Paramecium mutant. Nature 268, 120–124 (1977)

    Google Scholar 

  • Ogura, A., Takahashi, K.: Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature 264, 170–172 (1976)

    Google Scholar 

  • Satow, Y.: Internal calcium concentration and potassium permeability in Paramecium. J. Neurobiol. 9, 81–91 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hook, C., Hildebrand, E. Excitation of paramecium . J. Math. Biology 8, 197–214 (1979). https://doi.org/10.1007/BF00279722

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00279722

Key words

Navigation