Skip to main content
Log in

Plasmid pHH1 of Halobacterium salinarium: characterization of the replicon region, the gas vesicle gene cluster and insertion elements

  • Original Articles
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The DNA sequence of the 5.7 kb plasmid pHH9 containing the replicon region of the 150 kb plasmid pHH1 from Halobacterium salinarium was determined. The minimal region necessary for stable plasmid maintenance lies within a 2.9 kb fragment, as defined by transformation experiments. The DNA sequence contained two open reading frames arranged in opposite orientations, separated by an unusually high AT-rich (60–70% A + T) sequence of 350 bp. All H. salinarium strains (H. halobium, H. cutirubrum) investigated harbour endogenous plasmids containing the pHH1 replicon; however, these pHH1-type plasmids differ by insertions and deletions. Adjacent to the replicon, and separated by a copy of each of the insertion elements ISH27 and ISH26, is the 9 kb p-vac region required for gas vesicle synthesis. Analysis of these and other ISH element copies in pHH1 revealed that most of them lack the target DNA duplication usually found with recently transposed ISH elements. These results underline the plasticity of plasmid pHH1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blaseio U, Pfeifer F (1990) Transformation of Halobacterium halobium: Development of vectors and investigation of gas vesicle synthesis. Proc Natl Acad Sci USA 87:6772–6776

    Google Scholar 

  • Bramhill D, Kornberg A (1988) A model for initiation at origins of DNA replication. Cell 54:915–918

    Google Scholar 

  • Charlebois RL, Lam WL, Cline SW, Doolittle WF (1987) Characterization of pHV2 from Halobacterium volcanii and its use in demonstrating transformation of an archaebacterium. Proc Natl Acad Sci USA 84:8530–8534

    Google Scholar 

  • Charlebois RL, Schalkwyk L, Holman J, Doolittle WF (1991) Detailed physical map and set of overlapping cosmid clones covering the genome of the archaebacterium Haloferax volcanii DS2. Mol Biol 222:509–524

    Google Scholar 

  • Cline SW, Doolittle WF (1992) Transformation of members of the genus Haloarcula with shuttle vectors based on Halobacterium halobium and Haloferax volcanii plasmid replicons. J Bacteriol 174:1076–1080

    Google Scholar 

  • Cline SW, Schalkwyk L, Doolittle WF (1989) Transformation of the archaebacterium Halobacterium volcanii with genomic DNA. J Bacteriol 171:4987–4991

    Google Scholar 

  • DasSarma S (1989) Mechanisms of genetic variability in Halobacterium halobium: the purple membrane and gas vesicle mutations. Can J Microbiol 35:65–72

    Google Scholar 

  • DasSarma S, RajBhandari U, Khorana HG (1983) High-frequency spontaneous mutation in the bacterio-opsin gene in Halobacterium halobium is mediated by transposable elements. Proc Natl Acad Sci USA 80:2201–2205

    Google Scholar 

  • DasSarma S. Damerval T, Jones JG, Tandeau de Marsac N (1987) A plasmid-encoded gas vesicle protein gene in a halophilic archaebacterium. Mol Microbiol 1:365–370

    Google Scholar 

  • Devereux J, Häberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Ebert K, Goebel W (1985) Conserved and variable regions in the chromosomal and extrachromosomal DNA of halobacteria. Mol Gen Genet 200:96–102

    Google Scholar 

  • Ebert K, Hanke C, Delius H, Goebel W, Pfeifer F (1987) A new insertion element, ISH26, from Halobacterium halobium. Mol Gen Genet 206:81–87

    Google Scholar 

  • Englert C, Krüger K, Offner S, Pfeifer F (1992) Three different but related gene clusters involved in gas vesicle synthesis in halophilic Archaea. J Mol Biol 227:586–592

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Hofman JD, Schalkwyk L, Doolittle WF (1986) ISH51: a large, degenerate family of insertion sequence-like elements in the genome of the archaebacterium Halobacterium volcanii. Nucleic Acids Res 14:6983–7000

    Google Scholar 

  • Holmes M, Nuttall S, Dyall-Smith M (1991) Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J Bacteriol 173:3807–3813

    Google Scholar 

  • Horne M, Englert C, Pfeifer F (1988) Two genes encoding gas vacuole proteins in Halobacterium halobium. Mol Gen Genet 213:459–464

    Google Scholar 

  • Horne M, Englert C, Wimmer C, Pfeifer F (1991) A DNA region of 9 kb contains all genes necessary for gas vesicle synthesis in halophilic archaebacteria. Mol Microbiol 5:1159–1174

    Google Scholar 

  • Jones JG, Hackett N, Halladay J, Scothorn D, Yang C, Ng W, DasSarma S (1989) Analysis of insertion mutants reveals two new genes in the gas vesicle gene cluster of Halobacterium halobium. Nucleic Acids Res 17:7785–7793

    Google Scholar 

  • Jones JG, Young DC, DasSarma S (1991) Structure and organization of the gas vesicle gene cluster on the Halobacterium halobium plasmid pNRC100. Gene 102:117–122

    Google Scholar 

  • Krebs M, RajBhandari U, Khorana HG (1990) Nucleotide sequence of ISH11, a new Halobacterium halobium insertion element isolated from the plasmid pGRB1. Nucleic Acids Res 18:6699

    Google Scholar 

  • Lam W, Doolittle WF (1989) Shuttle vectors for the archaebacterium Halobacterium volcanii. Proc Natl Acad Sci USA 86:5478–82

    Google Scholar 

  • Manen D, Caro L (1991) The replication of plasmid pSC101. Mol Microbiol 5:233–237

    Google Scholar 

  • Moore R, McCarthy B (1969) Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria. J Bacteriol 99:248–254

    Google Scholar 

  • Ng WL, Kothakota S, DasSarma S (1991) Structure of the gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences. J Bacteriol 173:1958–1964

    Google Scholar 

  • Pfeifer F (1985) Insertion elements and genome organization of Halobacterium halobium. Syst Appl Microbiol 7:36–40

    Google Scholar 

  • Pfeifer F (1988) Genetics of halobacteria. In: F Rodriguez-Valera (ed) Halophilic bacteria. Vol 2, CRC Press, Boca Raton Florida, pp 105–133

    Google Scholar 

  • Pfeifer F, Betlach M (1985) Genome organization in Halobacterium halobium: a 70 kb island of more AT-rich DNA in the chromosome. Mol Gen Genet 198:449–455

    Google Scholar 

  • Pfeifer F, Blaseio U (1989) Insertion elements and deletion formation in a halophilic archaebacterium. J Bacteriol 171:5135–5140

    Google Scholar 

  • Pfeifer F, Blaseio U (1990) Transposition burst of the ISH27 insertion element family in Halobacterium halobium. Nucleic Acids Res 18:6921–6952

    Google Scholar 

  • Pfeifer F, Ghahraman P (1991) The halobacterial insertion element ISH28. Nucleic Acids Res 19:5788

    Google Scholar 

  • Pfeifer F, Weidinger G, Goebel W (1981 a) Characterization of plasmids in halobacteria. J Bacteriol 145:369–374

    Google Scholar 

  • Pfeifer F, Weidinger G, Goebel W (1981 b) Genetic variability in Halobacterium halobium. J Bacteriol 145:375–381

    Google Scholar 

  • Pfeifer F, Ebert K, Weidinger G, Goebel W (1982) Structure and functions of chromosomal and extrachromosomal DNA in halobacteria. Zbl Bakt Hyg I Abt Orig. C3 110–119

    Google Scholar 

  • Pfeifer F, Betlach M, Martienssen R, Friedman J, Boyer HW (1983) Transposable elements of Halobacterium halobium. Mol Gen Genet 191:182–188

    Google Scholar 

  • Pfeifer F, Boyer HW, Betlach M (1985) Restoration of bacterioopsin gene expression in a revertant of Halobacterium halobium. J Bacteriol. 164:414–420

    Google Scholar 

  • Pfeifer F, Blaseio U, Ghahraman P (1988) Dynamic plasmid populations in Halobacterium halobium. J Bacteriol 170:3718–42

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Simon RD (1978) Halobacterium strain 5 contains a plasmid which is correlated with the presence of gas vacuoles. Nature, London 273:314–317

    Google Scholar 

  • Simsek M, DasSarma S, RajBhandari U, Khorana HG (1981) A transposable element from Halobacterium halobium which inactivates the bacteriorhodopsin gene. Proc Natl Acad Sci USA 79:7268–7272

    Google Scholar 

  • Staley J, Marvin P. Pfennig N, Holt J (1989) Bergey's manual of systematic bacteriology. Vol. 3, Williams and Wilkins, Baltimore, Maryland, pp 2216–2228

    Google Scholar 

  • Weidinger G, Klotz G, Goebel W (1979) A large plasmid from Halobacterium halobium carrying genetic information for gas vacuole formation. Plasmid 2:377–386

    Google Scholar 

  • Weidinger G, Pfeifer F, Goebel W (1981) Plasmids in halobacteria: restriction maps. Methods Enzymol 88:374–379

    Google Scholar 

  • Xu WL, Doolittle WF (1983) Structure of the archaebacterial transposable element ISH50. Nucleic Acids Res 11:4195–4199

    Google Scholar 

  • Zvyaga TA, Zozulya SA, Guriev SO (1987) The nucleotide sequence of the archaebacterial transposable genetic element ISH S1. Bioorg Chem 13:1351–1357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Goebel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeifer, F., Ghahraman, P. Plasmid pHH1 of Halobacterium salinarium: characterization of the replicon region, the gas vesicle gene cluster and insertion elements. Molec. Gen. Genet. 238, 193–200 (1993). https://doi.org/10.1007/BF00279547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00279547

Key words

Navigation