Skip to main content
Log in

The genetics of resistance to long-term exposure to CO2 in Drosophila melanogaster; an environmental stress leading to anoxia

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

Genetic heterogeneity in populations of D. melanogaster has been described for resistance to long-term exposure to CO2 (4 to 5 hours). Crosses between inbred strains, and between strains set up from single inseminated females collected in the wild show the importance of additive genes. Genetic activity for resistance and sensitivity was found on the X, 2 and 3 chromosomes.

The mechanism of resistance was shown to be an anoxia effect since the effect of an N2 atmosphere was the same as that of CO2. A study of 18 strains collected in the wild revealed a positive correlation between metabolic rate as measured by O2 uptake and mortality under CO2, and negative correlations were found between body weight, and both mortality under CO2 and metabolic rate. These results are consistent with an anoxia effect. A further variable correlated with body weight is resistance to desiccation. Thus the anoxia effect is correlated with factors determining the distribution of the species in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Brooks, M. A.: The effects of repeated anaesthesia on the biology of Blattela germanica (L.). Entomol. Exp. and Appl. 8, 39–48 (1965).

    Google Scholar 

  2. Crow, J. F.: Analysis of a D.D.T.-resistant strain of Drosophila. J. Econ. Entomol. 47, 393–398 (1954).

    Google Scholar 

  3. Crow, J. F.: Genetics of insect resistance to chemicals. Ann. Rev. Entomol. 2, 227–246 (1957).

    Google Scholar 

  4. Deery, B. J., Parsons, P. A.: Variations in the resistance of natural populations of Drosophila to phenylthiocarbamide. Egypt. J. Genet. Cytol. 1, 13–17 (1972a).

    Google Scholar 

  5. Deery, B. J., Parsons, P. A.: Ether resistance in Drosophila melanogaster. Theoret. Appl. Genet. 42, 208–214 (1972b).

    Google Scholar 

  6. Edwards, L. J., Patton, R. L.: Effects of CO2 anaesthesia on the house cricket Acheta domesticus. Ann. Entomol. Soc. Amer. 58, 828–832 (1965).

    Google Scholar 

  7. Gilmour, D.: The Biochemistry of Insects. New York and London: Academic Press 1965.

    Google Scholar 

  8. Griffing, B.: Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. biol. Sci. 9, 463–493 (1956).

    Google Scholar 

  9. Hunter, A. S.: Effects of temperature on Drosophila. I. Respiration of D. melanogaster grown at different temperatures. Comp. Biochem. Physiol. 11, 411–417 (1964).

    Google Scholar 

  10. Kalmus, H., Kerridge, J., Tattersfield, F.: Occurrence of susceptibility to carbon dioxide in Drosophila melanogaster from different countries. Nature 173, 1101–1102 (1954).

    Google Scholar 

  11. Kearsey, M. J., Kojima, K.: The genetic architecture of body weight and egg hatchability in Drosophila melanogaster. Genetics 56, 23–37 (1967).

    Google Scholar 

  12. King, J. C., Sømme, L.: Chromosomal analyses of the genetic factors for resistance to D.D.T. in two resistant lines of Drosophila melanogaster. Genetics 43, 577–593 (1958).

    Google Scholar 

  13. L'Héritier, P.: The CO2 sensitivity problem in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 16, 99–112 (1951).

    Google Scholar 

  14. L'Héritier, P.: The hereditary virus of Drosophila. Adv. Virus Res. 5, 195–245 (1957).

    Google Scholar 

  15. L'Héritier, Teissier, G.: Une anomalie physiologique héréditaire chez le Drosophile. C. R. hebd. Séanc. Acad. Sci. Paris 205, 1099–1101 (1937).

    Google Scholar 

  16. Lints, F. A., Lints, C. V.: Respiration in Drosophila. III. Influence of preimaginal environment on respiration and ageing in Drosophila melanogaster hybrids. Exp. Geront. 4, 81–94 (1969).

    Google Scholar 

  17. Mather, K.: The balance of polygenic combinations. J. Genet. 43, 309–336 (1942).

    Google Scholar 

  18. Mather, K.: Polygenic inheritance and natural selection. Biol. Rev. 18, 32–64 (1943).

    Google Scholar 

  19. Mather, K.: Variability and selection. Proc. Roy. Soc. London B. 164, 328–340 (1966).

    Google Scholar 

  20. Matheson, A. C., Arnold, J. T. A.: Resistance to Carbon Dioxide, an anoxic stress in Drosophila melanogaster. Experientia, in press (1973).

  21. Parsons, P. A.: The genotypic control of longevity in Drosophila melanogaster under two environmental regimes. Aust. J. Biol. Sci. 19, 587–591 (1966).

    Google Scholar 

  22. Parsons, P. A.: Genetic heterogeneity in natural populations of Drosophila melanogaster for ability to withstand desiccation. Theoret. and Appl. Genetics 40, 261–266 (1970).

    Google Scholar 

  23. Parsons, P. A.: Behavioural and Ecological Genetics. A Study in Drosophila. Oxford: Clarendon Press 1973.

    Google Scholar 

  24. Parsons, P. A., Hosgood, S. M. W., Lee, B. T. O.: Polygenes and polymorphism. Molec. Gen. Genetics 99, 165–170 (1967).

    Google Scholar 

  25. Parsons, P.A., MacBean, I. T., Lee, B. T. O.: Polymorphism in natural populations for genes controlling radioresistance in Drosophila. Genetics 61, 211–218 (1969).

    Google Scholar 

  26. Prosser, C. L., Brown, F. A.: Comparative Animal Physiology, 2nd ed. Philadelphia: W. B. Saunders 1961.

    Google Scholar 

  27. Thoday, J. M., Gibson, J. B., Spickett, S. G.: Some polygenes. Heredity 18, 553–554 (1963).

    Google Scholar 

  28. Umbreit, W. W., Burris, R. H., Stauffer, J. F.: Manometric Techniques, 4th ed. Minneapolis: Burgess 1964.

    Google Scholar 

  29. Westerman, J. M., Parsons, P.A.: Variations in genetic architecture at different doses of γ-radiation as measured by longevity in Drosophila melanogaster. Canad. J. Genet. Cytol., in press (1973).

  30. Williamson, D. L.: Carbon dioxide sensitivity in Drosophila affinis and Drosophila athabasca. Genetics 46, 1053–1060 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Melchers and W. Seyffert

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matheson, A.C., Parsons, P.A. The genetics of resistance to long-term exposure to CO2 in Drosophila melanogaster; an environmental stress leading to anoxia. Theoret. Appl. Genetics 43, 261–268 (1973). https://doi.org/10.1007/BF00277786

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277786

Keywords

Navigation