Skip to main content
Log in

The synthesis of S-adenosylmethionine by mutants with defects in S-adenosylmethionine synthetase

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Some metK mutants of Salmonella typhimurium with constitutive methionine biosynthesis have no detectable S-adenosylmethionine (SAM) synthetase, the enzyme which converts methionine to SAM, the postulated corepressor of the methionine pathway. However these mutants are not auxotrophic for SAM, an essential compound for many reactions. Here it is shown that these mutants have normal functioning of pathways involving SAM and do in fact produce SAM at as high levels as wild-type. Also, SAM synthetase is shown to be dispensible for growth but not for methionine regulation. These results indicate that there is another route of SAM synthesis independent of SAM synthetase. This route probably also uses methionine as substrate as metK mutants are shown to convert methionine to SAM as efficiently as analogous non-metK strains. The existence of a second route of SAM synthesis makes it necessary to postulate a compartmentalization of SAM made via the SAM synthetase reaction from SAM made in any other way to explain the reduced ability of metK mutants to repress methionine biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abshire, C.J., Larouquere, J., Berlinguet, L.: 1-aminocyclopentane-carboxylic acid, an inhibitory analogue of methionine in Escherichia coli. Canad. J. Biochem. Physiol. 45, 557–561 (1967)

    Google Scholar 

  • Ahmed, A.: Mechanism of repression of methionine biosynthesis in Escherichia coli. I. The role of methionine, S-adenosylmethionine and methionyl-transfer ribonucleic acid in repression. Molec. gen. Genet. 123, 299–324 (1973)

    Google Scholar 

  • Ames, B.N., Ames, G.F., Young, J.D., Tsuchiya, D., Lecocq, J.: Illicit transport: the oligopeptide permease. Proc. nat. Acad. Sci. (Wash.) 70, 456–458 (1973)

    Google Scholar 

  • Chater, K.F.: Dominance of the wild-type alleles of methionine regulatory genes in Salmonella typhimurium. J. gen. Microbiol. 63, 95–109 (1970)

    Google Scholar 

  • Chou, T.-C., Talalay, P.: The mechanism of S-adenosyl-L-methionine synthesis by purified preparation of bakers' yeast. Biochemistry (Wash.) 11, 1065–1073 (1972)

    Google Scholar 

  • Colson, A.M., Colson, C.: Expression of the Escherichia coli K, B and phage P1 DNA host specificities in Salmonella typhimurium. J. gen. Microbiol. 70, 123–128 (1972)

    Google Scholar 

  • Colson, C., Colson, A.M.: A new Salmonella typhimurium DNA host specificity. J. gen. Microbiol. 69, 345–351 (1971)

    Google Scholar 

  • Dubin, D.T., Rosenthal, S.M.: The acetylation of polyamines in Escherichia coli. J. biol. Chem. 235, 776–782 (1960)

    Google Scholar 

  • Duerre, J.A.: In vivo and in vitro metabolism of S-adenosyl-L-homocysteine by Saccharomyces cerevisiae. Arch. Biochem. Biophys. 124, 422–430 (1968)

    Google Scholar 

  • Duerre, J.A., Schlenk, F.: Formation and metabolism of S-adenosylhomocysteine in yeast. Arch. Biochem. Biophys. 96, 575–579 (1962)

    Google Scholar 

  • Greene, R.C., Hunter, J.S.V., Coch, E.H.: Properties of metK mutants of Escherichia coli K-12. J. Bact. 115, 57–67 (1973)

    Google Scholar 

  • Greene, R.C., Su, C.-H., Holloway, C.T.: S-adenosylmethionine synthetase deficient mutants of Escherichia coli K12 with impaired control of methionine biosynthesis. Biochem. biophys. Res. Commun. 38, 1120–1125 (1970)

    Google Scholar 

  • Hobson, A.C.: A norleucine-resistant mutant of Salmonella typhimurium with a possible defect in valine uptake or regulation. J. gen. Microbiol. 82, 425–429 (1974a)

    Google Scholar 

  • Hobson, A.C.: The regulation of methionine and S-adenosylmethionine biosynthesis and utilization in mutants of Salmonella typhimurium with defects in S-adenosylmethionine synthesis. Molec. gen. Genet. 131, 263–273 (1974b)

    Google Scholar 

  • Hobson, A.C., Smith, D.A.: S-adenosylmethionine synthetase in methionine regulatory mutants of Salmonella typhimurium. Molec. gen. Genet. 126, 7–18 (1973)

    Google Scholar 

  • Lawrence, D.A., Smith, D.A., Rowbury, R.J.: Regulation of methionine synthesis in Salmonella typhimurium mutants resistant to inhibition by analogues of methionine. Genetics, Princeton. 58, 473–492 (1968)

    Google Scholar 

  • Lombardini, J.B., Coulter, A.W., Talalay, P.: Analogues of methionine as substrates and inhibitors of the methionine adenosyltransferase reaction. Molec. Pharmacol. 6, 481–499 (1970)

    Google Scholar 

  • Meselson, M., Yuan, R., Heywood, J.: Restriction and modification of DNA. Ann. Rev. Biochem. 41, 447–466 (1972)

    Google Scholar 

  • Minson, A.C., Smith, D.A.: Methionine regulatory defects in Salmonella typhimurium arising from amber-suppressible mutations. J. gen. Microbiol. 70, 471–476 (1972)

    Google Scholar 

  • Morris, D.R., Wu, W.H., Applebaum, D., Koffron, K.L.: Regulatory patterns in putrescine biosynthesis in Escherichia coli. Ann. N.Y. Acad. Sci. 171, 968–976 (1970)

    Google Scholar 

  • Mudd, J.H., Cantoni, G.L.: Biological transmethylation, methylgroup neogenesis and other “one-carbon” metabolic reactions dependent upon tetrahydrofolic acid. In: Comprehensive Biochemistry, (eds. Florkin, M. and Storz, E.H.,) vol. 15, p. 1–47. Amsterdam: Elsevier 1964

    Google Scholar 

  • Raina, A., Cohen, S.S.: Polyamines and RNA synthesis in a polyauxotrophic strain of E. coli. Proc. nat. Acad. Sci. (Wasb.) 55, 1587–1593 (1966)

    Google Scholar 

  • Rosenthal, S., Smith, L.C., Buchanan, J.M.: Enzymatic synthesis of the methyl group of methionine. IX. Transmethylation from S-adenosyl-methionine and 5-methyltetrahydrofolate to 2-mercaptoethanol and homocysteine. J. biol. Chem. 240, 836–843 (1965)

    Google Scholar 

  • Schell, J.: The mechanism of restriction of bacteriophage λ in Escherichia coli strains: demonstration of an in vivo requirement for SAM. Virology 39, 66–73 (1969)

    Google Scholar 

  • Schlenk, F., De Palma, R.E.: The formation of S-adenosyl-methionine in yeast. J. biol. Chem. 229, 1037–1050 (1957)

    Google Scholar 

  • Schlenk, F., Ehninger, D.J.: Observations on the metabolism of 5′-methylthioadenosine. Arch. Biochem. Biophys. 106, 95–100 (1964)

    Google Scholar 

  • Sercatz, E.E., Gorini, L.: Differential contribution of exogenous and endogenous arginine to repressor formation. J. molec. Biol. 8, 254–262 (1964)

    Google Scholar 

  • Shapiro, S.K., Mather, A.N.: The enzymatic decomposition of S-adenosyl-L-methionine. J. biol. Chem. 233, 631–633 (1958)

    Google Scholar 

  • Smith, D.A.: Some aspects of the genetics of methionineless mutants of Salmonella typhimurium. J. gen. Microbiol. 24, 335–353 (1961)

    Google Scholar 

  • Smith, H.O., Levine, M.: A phage P22 gene controlling integration of prophage. Virology 31, 207–216 (1967)

    Google Scholar 

  • Tabor, H., Rosenthal, S., Tabor, C.W.: The biosynthesis of spermidine and spermine from putrescine and methionine. J. biol. Chem. 233, 907–914 (1958)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Böhme

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobson, A.C. The synthesis of S-adenosylmethionine by mutants with defects in S-adenosylmethionine synthetase. Molec. Gen. Genet. 144, 87–95 (1976). https://doi.org/10.1007/BF00277310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277310

Keywords

Navigation