Skip to main content
Log in

Molecular mechanisms of the origin of chromosome aberrations and the structural organisation of eukaryotic DNA

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

A new hypothesis on the appearance of exchange chromosomal aberrations has been suggested. According to this hypothesis, temporal duplex polynucleotide structure should arise during G1 and G2 phases during the correction of DNA. The size of the duplex, as a rule, should be restricted to the size of complementary nucleotide sequences in the regions of repetitions. Any polynucleotide break in a duplex zone would result in chromosome breakage and if complementary broken ends interact with each other, then exchange chromosome aberrations may be formed. This hypothesis would explain such previously obscure phenomena as extremely high frequencies of exchanges after mutagen treatment, the nature of mitotic crossing-over, negative interference, change of aberration types before replication, the low frequency of damaged structural genes during aberration formation, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Akifjev, A.P.; Aingorn, E.D.: DNA synthesis related to genome activation in human lymphocytes cultured in vitro. Exptl. Cell Res. 75, 369–378 (1972)

    Google Scholar 

  • Akifjev, A.P.; Makarov, V.B.: Lateral structure of Vicia faba chromosomes. Cytology 16, 24–32 (1974) (In Russian)

    Google Scholar 

  • Alberts, B.: DNA-unwinding proteins and their role in the replication of DNA. In: Mechanisms of Regulation of DNA Replication (Eds. Kolber, A.R.; Kohiyama, M.) 133–148. New York: Plenum Press 1974

    Google Scholar 

  • Bender, M.A.; Griggs, H.G.; Bedford, J.S.: Mechamisms of chromosome aberration production. III. Chemical and ionizing radiation. Mutation Res. 23, 197–212 (1974)

    Google Scholar 

  • Bonner, J.; Garrard, W.T.; Gottesrelf, L.; Holmes, D.S.; Sevald, J.S.; Wilkes, M.: Functional organization of the mammalian genome. Cold Spring Harb. Sympos. Quantit. Biology 38, 303–310 (1974)

    Google Scholar 

  • Borstel, R. von: On the origin of spontaneous mutations. Jap. J. Genetics 44, Suppl. I, 102–114 (1969)

    Google Scholar 

  • Brewen, J.; Preacock, W.J.: Restricted rejoining of chromosomal subunits in aberration formation. Proc. Natl. Acad. Sci. (U.S.) 62, 389–394 (1969)

    Google Scholar 

  • Britten, R.I.; Kohne, D.E.: Repeated sequences in DNA. Science 161, 529–540 (1968)

    Google Scholar 

  • Callan, H.G.: The organization of genetic units in chromosomes. J. Cell Sci. 2, 1–7 (1967)

    Google Scholar 

  • Chamberlin, M.E.; Britten, R.I.; Davidson, E.H.: Sequence organization in Xenopus DNA studied by the electron microscope. J. Mol. Biol. 96, 317–333 (1975)

    Google Scholar 

  • Davidson, E.H.; Graham, D.E.; Neufeld, B.P.; Chamberlin, M.E.; Hough, B.R.; Britten, R.J.: Arrangement and characterisation of repetitive sequence elements in animal DNA. Cold Spring Harb. Sympos. Quant. Biol. 38, 295–300 (1974)

    Google Scholar 

  • Degtyarev, S.V.; Akifjev, A.P.: Cyclization of chromosome DNA of mice as a result of complementary interaction of single-strand sites in the regions of partial denaturation. Proc. Natl. Acad. Sci. U.S.S.R. 224, 449–452 (1975) (In Russian)

    Google Scholar 

  • Dubinin, N.P.; Soyfer, V.N.: Chromosome breakage and complete genic mutation production in molecular terms. Mutation Res. 8, 353–365 (1969)

    Google Scholar 

  • Evans, H.J.: Chromosome aberrations induced by ionizing radiations. Intern. Rev. Cytol. 13, 221–321 (1962)

    Google Scholar 

  • Evans, H.J.; Savage, I.R.K.: The relation between DNA synthesis and chromosome structure as resolved by X-ray damage. J. Cell. Biol. 18, 525–540 (1963)

    Google Scholar 

  • Evenson, D.P.; Mego, W.A.; Taylor, J.H.: Subunits of chromosomal DNA. I. Electron microscopic analysis of partially denatured DNA. Chromosoma 36, 225–235 (1972)

    Google Scholar 

  • Fox, A.S.; Yoon, S.B.: Specific genetic effects of DNA in Drosophila melanogaster. Genetics 53, 897–911 (1966)

    Google Scholar 

  • Holliday, R.: The organisation of DNA in eukaryotic chromosomes. Sympos. Soc. Gener. Microbiol. 20, 359–380 (1970)

    Google Scholar 

  • Horikawa, M.; Nikaido, O.; Sugahara, T.: Dark reactivation of damage induced by ultraviolet light in mammalian cells in vitro. Nature 218, 489–491 (1968)

    Google Scholar 

  • Howard-Flanders, P.; Boyce, R.P.: DNA repair and genetic recombination: studies of mutants of Escherichia coli defective in these processes. Radiat. Res., Suppl. 6, 156–184 (1966)

    Google Scholar 

  • Howland, G.P.: Dark-repair of ultraviolet-induced pyrimidine dimers in the DNA of wild carrot protoplasts. Nature 254, 160–161 (1975)

    Google Scholar 

  • Kavenoff, R.R.; Klotz, L.C.; Zimm, B.: On the nature of chromosome sized DNA molecules. Cold Spring Harb. Sympos. Quant. Biol. 38. 1–9 (1974)

    Google Scholar 

  • Lea, D.E.: Action of Radiation on Living Cells. Cambridge: Cambr. Univ. Press 1955

    Google Scholar 

  • Ledoux, L.; Huart, R.; Jacobs, M.: DNA mediated genetic correction of thiamineless Arabidopsis thaliana. Nature 249, 17–21 (1974)

    Google Scholar 

  • Leenhouts, H.P.; Chadwick, K.H.: Radiation-induced DNA double-strand breaks and chromosome aberrations. Theor. Appl. Genet. 44, 167–172 (1974)

    Google Scholar 

  • Lefevre, G.: The one band — one gene hypothesis: evidence from a cytogenetic analysis of mutants and nonmutant rearrangement break points in Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. 38, 591–599 (1974)

    Google Scholar 

  • Lyapunova, N.A.; Bogdanov, Y.F.: Physiology, cytochemistry and biochemistry of meiosis. In: Cytology and Genetics of Meiosis (Eds. Khvostova, V.V., Bogdanov, Y.F.) 138–183. Moscow: Publ. House “Nauka” 1975

    Google Scholar 

  • Nawa, S.; Yamada, M.A.: Hereditary change in Ephestia after treatment with DNA. Genetics 58, 573–584 (1968)

    Google Scholar 

  • Nemtseva, L.S.: Aftereffect of fast neutrons in Crepis capillaris seeds. Radiobiology 5, 126–129 (1965) (In Russian)

    Google Scholar 

  • Prescott, D.M.: The structure and replication of eukaryotic chromosomes. Adv. Cell Biology 1, 57–117 (1970)

    Google Scholar 

  • Regan, J.D.; Trosco, J.E.; Carrier, W.L.: Evidence for excision of ultraviolet-induced pyrimidine dimers from DNA of human cells in vitro. Biophys. J. 8, 319–325 (1968)

    Google Scholar 

  • Revell, S.: A new hypothesis for chromatid changes. Proc. Radiobiol. Sympos., Liege (1954)

  • Sax, K.: Induction by X-rays of chromosome aberrations in Tradescantia microspores. Genetics 23, 494–512 (1938)

    Google Scholar 

  • Setlow, R.B.: Physical changes and mutagenesis. J. Cell and Comparative Physiol. 64, suppl. I, 51–68 (1964)

    Google Scholar 

  • Setlow, R.B.: Cyclobutane-type pyrimidine dimers in polynucleotides. Science 153, 379–386 (1966)

    Google Scholar 

  • Shavelson, R.A.; Akifjev, A.P.; Soyfer, V.N.: Inhibition at G1-S boundary of chromosomal exchange interactions induced by radiation in the cells of Crepis capillaris. Radiocytology 75, 38 (1976) (In Russian)

    Google Scholar 

  • Slor, H.; Lev, T.: Ultraviolet-induced changes in DNA: possible confusion of repair and degraditive enzymes. Biochim. Biophys. Acta 312, 637–644 (1973)

    Google Scholar 

  • Soyfer, V.N.: Molecular Mechanisms of Mutagenesis. Moscow: Publ. House “Nauka” 1969 (In Russian)

    Google Scholar 

  • Soyfer, V.N.: Outlines of the History of Molecular Genetics. Moscow: Publ. House “Nauka” 1970 (In Russian)

    Google Scholar 

  • Soyfer, V.N.: Neueste Forschungsergebnisse und Perspectiven der Mutationstheorie. Moderne Medizin, Stuttgart 1, 134–141 (1971)

    Google Scholar 

  • Soyfer, V.N.: Chemical Basis of Mutation. In: Evolutionary Biology (International Annual Textboods) (eds. Dobzhansky, Th., Hecht, M., Steere, W.) Vol. 8, pp. 121–236. N.Y.-London: Plenum Press 1975

    Google Scholar 

  • Soyfer, W.N.: Molekulare Mechanismen der Mutagenese und Reparatur. Berlin: Akademie Verlag 1976

    Google Scholar 

  • Soyfer, V.N.; Cieminis, K.K.: Dark repair in higher plants. Proc. Acad. Sci. U.S.S.R. 215, 1261–1264 (1974) (In Russian)

    Google Scholar 

  • Soyfer, V.N.; Kartel, N.A.; Cieminis, K.K.; Agranovsky, A.A.: The direct investigation of DNA synthesis in the barley seedlings in normal conditions and after gamma-irradiation of seeds under posttreatment of seedlings by caffeine. Proc. Acad. Agricult. Sci. U.S.S.R. 11, 8–10 (1973) (In Russian)

    Google Scholar 

  • Soyfer, V.N.; Titov, Y.B.; Kartel, N.A.; Sen', L.A.: Participation of intracellular enzymes in the control of mutation process. No. Biol. Bullet. Acad. Sci. U.S.S.R., No. 3 (1977) (In Russian)

  • Soyfer, V.N.; Turbin, N.V.: Genetic transformation of waxy character in barley. 2nd Europ. Meet. Transformation and Transfection, Krakow 120–123 (1974)

  • Soyfer, V.N.; Yakovleva, N.I.: Kinetics of excision of thymine dimers from DNA of human cells irradiated with UV-rays. IV. Intern. Biophys. Congr., Sections I–IV, 135–136 (1972)

  • Stern, C.: Somatic crossing-over and segregation in Drosophila melanogaster. Genetics 21, 625–632 (1936)

    Google Scholar 

  • Stern, H.; Hotta, Y.: DNA-metabolism during pachytene in reaction to crossingover. Genetics 78, 227–235 (1974)

    Google Scholar 

  • Szybalsky, W.: Structural modifications of DNA: crosslinking, circularization and single-strand interruptions. In: Erwin-Baur-Gedächtnisvorlesungen III, S.S. 1–19. Berlin: Akademie Verlag 1964

    Google Scholar 

  • Thomas, C.A.: The theory of master gene. In: The Neurosciences, Second study program, New York, 973–998 (1970)

  • Turbin, N.W.; Soyfer, V.N.; Kartel, N.A.; Chekalin, N.M.; Titov, Y.B.; Cieminis, K.K.: Genetic modification of the waxy character in barley under the action of exogenous DNA of the wild varieties. Mutation Res. 27, 59–68 (1975)

    Google Scholar 

  • Vachtin, Y.B.: Genetics of Somatic Cells. Leningrad: Publ. House “Nauka” 1973

    Google Scholar 

  • Whitehouse, H.L.K.: A cycloid model for the chromosome. J. Cell Sci. 2, 9–22 (1967)

    Google Scholar 

  • Wilson, A.C.; Sarich, V.M.; Maxon, L.R.: The importance of gene rearrangement in evolution: evidence from studies of rates of chromosomal, protein and anatomical evolution. Proc. Natl. Acad. Sci. U.S. 71, 3028–3030 (1974)

    Google Scholar 

  • Witkin, E.M.: Radiation-induced mutations and their repair. Jap. J. Genet., 44, Suppl. 1 (1969)

  • Wolff, S.: Experimental modification of the “tertiary structure” of chromosomes in human lymphocytes: the effects of polycationic substances and hypertonic salt solutions. Mutation Res. 17, 231–237 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D.K. Belyaev

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soyfer, V.N., Akifjev, A.P. Molecular mechanisms of the origin of chromosome aberrations and the structural organisation of eukaryotic DNA. Theoret. Appl. Genetics 50, 63–72 (1977). https://doi.org/10.1007/BF00277248

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277248

Key words

Navigation