Skip to main content
Log in

The bacterial attachment site of the temperate Rhizobium phage 16-3 overlaps the 3′ end of a putative proline tRNA gene

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Bacteriophage 16-3 inserts its genome into the chromosome of Rhizobium meliloti strain 41 (Rm41) by site-specific recombination. The DNA regions around the bacterial attachment site (attB) and one of the hybrid attachment sites bordering the integrated prophage (attL) were cloned and their nucleotide sequences determined. We demonstrated that the 51 by region, where the phage and bacterial DNA sequences are identical, is active as a target site for phage integration. Furthermore it overlaps the 3′ end of a putative proline tRNA gene. This gene shows 79% similartiy to the corresponding proline tRNA-like genomic target sequence of certain integrative plasmids in Actinomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An G, Friesen JD (1979) Plasmid vehicles for direct cloning of Escherichia coli promoters. J Bacteriol 140:400–407

    Google Scholar 

  • Berman ML, Enquist LW, Silhavy TJ (eds) (1982) Advanced bacterial genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York p 132

    Google Scholar 

  • Boccard F, Smokvina T, Pernodet J-L, Friedmann A, Guérineau M (1989) The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J 8:973–980

    Google Scholar 

  • Boesten B, Lenzen G, Danchin A, O'Gara F (1987) Nucleotide sequence of a leu-tRNACAG gene from Rhizobium meliloti. Gene 55:153–156

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Chalker DL, Sandmeyer SB (1990) Transfer RNA genes are genomic targets for de novo transposition of the yeast retrotransposon Ty3. Genetics 126:837–850

    Google Scholar 

  • Chen EY, Seeburgh PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170

    Google Scholar 

  • Craig NL (1988) The mechanism of conservative site-specific recombination. Annu Rev Genet 22:77–105

    Google Scholar 

  • Craigie R (1992) Hotspots and warm spots: integration specificity of retroelements. Trends Genet 8:187–190

    Google Scholar 

  • Dallmann G, Papp P, Orosz L (1987) Related specificity of unrelated phages. Nature 330:398–401

    Google Scholar 

  • Dallmann G, Marines F, Papp P, Gaszner M, Orosz L (1991) The isolated N-terminal DNA binding domain of the c repressor of bacteriophage 16-3 is functional in DNA binding in vivo and in vitro. Mol Gen Genet 227:106–112

    Google Scholar 

  • Dente L, Cortese R (1987) pEMBL: a new family of single-stranded plasmids for sequencing DNA. Methods Enzymol 155:111–119

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Dorgai L, Olasz F, Berényi M, Dallmann G, Páy A, Orosz L (1981) Orientation of the genetic and physical map of Rhizobium meliloti temperate phage 16-3. Mol Gen Genet 182:321–325

    Google Scholar 

  • Dorgai L, Polner G, Jonás E, Garamszegi N, Ascher Z, Páy A, Dallmann G, Orosz L (1983) The detailed physical map of the temperate phage 16-3 of Rhizobium meliloti. Mol Gen Genet 191:430–433

    Google Scholar 

  • Dorgai L, Papp I, Papp P, Kalman M, Orosz L (1993) Nucleotide sequences of the sites involved in the integration of phage 16-3 of Rhizobium meliloti 41. Nucl Acids Res 21:1671

    Google Scholar 

  • Dudás B, Orosz L (1980) Correlation between map position and phenotype of Cti mutants in the C cistron of Rhizobium meliloti phage 16-3. Genetics 96:321–329

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Figurski DH, Helinski DR (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652

    Google Scholar 

  • Friedman AM, Long SR, Brown SE, Buikema WJ, Ausubel FM (1982) Construction of a broad host range cosmid cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18:289–296

    Google Scholar 

  • Haubert J, Stucka R, Krieg R, Feldmann H (1988) Analysis of yeast chromosomal regions carrying members of the glutamate tRNA gene family: various transposable elements are associated with them. Nucleic Acids Res 16:10623–10634

    Google Scholar 

  • Hauser MA, Scocca JJ (1992) Site-specific integration of the Haemophilus influenzae bacteriophage HP1. J Biol Chem 267:6859–6864

    Google Scholar 

  • Inouye S, Sunshine MG, Six EW, Inouye M (1991) Retronphage ΦR73: An E. coli phage that contains a retroelement and integrates into a tRNA gene. Science 252:969–971

    Google Scholar 

  • Klaus S, Detlev H, Meyer J (1992) Bacterienviren. Gustav Fischer Verlag, Jena, Stuttgart, pp 204–207

    Google Scholar 

  • Kondorosi Å, Kiss Gy, Forrai T, Vince É, Bánfalvi ZS (1977) Circular linkage map of Rhizobium meliloti chromosome. Nature 268:525–527

    Google Scholar 

  • Kuchino Y, Mori F, Nishimura S (1985) Structure and transcription of the tRNA(1)-Pro gene from Escherichia coli. Nucleic Acids Res 13:3213–3220

    Google Scholar 

  • Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58:913–949

    Google Scholar 

  • Lamond, AI, Travers AA (1985) Stringent control of bacterial transcription. Cell 41:6–8

    Google Scholar 

  • Lee SC, Omer CA, Brasch MA, Cohen SN (1988) Analysis of recombination occurring at SLP1 att sites. J Bacteriol 170:5806–5813

    Google Scholar 

  • Marschalek R, Brechner T, Amon-Böhm E, Dingermann T (1989) Transfer RNA genes: landmarks for integration of mobile genetic elements in Dictiostelium discoideum. Science 244:1493–1496

    Google Scholar 

  • Mazodier P, Thompson C, Boccard F (1990) The chromosomal integration site of the Streptomyces element pSAM2 overlaps a putative tRNA gene conserved among actinomycetes. Mol Gen Genet 222:431–434

    Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321

    Google Scholar 

  • Miller H (1987) Practical aspects of preparing phage and plasmid DNA: growth maintenance, and storage of bacteria and bacteriophage. Methods Enzymol 152:145–170

    Google Scholar 

  • Olasz F, Dorgai L, Papp P, Hermesz E, Kósa E, Orosz L (1985) On the site-specific recombination of phage 16-3 of Rhizobium meliloti: identification of genetic elements and att recombinations. Mol Gen Genet 201:289–295

    Google Scholar 

  • Orosz L (1980) Methods for analysis of the C cistron of temperate phage 16-3 of Rhizobium meliloti. Genetics 94:265–276

    Google Scholar 

  • Orosz L (1982) Bacteriophage 16-3 of Rhizobium meliloti and its pattern of recombination. Stadler symp Univ of Missouri 14:87–98

    Google Scholar 

  • Orosz L, Sváb Z, Kondorosi A, Sik T (1973) Genetic studies on Rhizobiophage 16-3. I. Genes and functions on the chromosome. Mol Gen Genet 125:341–350

    Google Scholar 

  • Orosz L, Rostás K, Hotchkiss R (1980) A comparison of two-point, three-point and deletion mapping in the C cistron of Rhizobiophage 16-3, with an explanation for the recombination pattern. Genetics 94:249–263

    Google Scholar 

  • Pierson LS III, Kahn ML (1987) Integration of bacteriophage P4 in Escherichia coli. DNA sequences of the phage and host regions involved in site-specific recombination. J Mol Biol 196:487–496

    Google Scholar 

  • Priefer UB, Simon R, Pühler A (1985) Extension of the host range of Escherichia coli vectors by incorporation of RSF1010 replication and mobilization functions. J Bacteriol 163:324–330

    Google Scholar 

  • Putnoky P, Kondorosi Å (1986) Two gene clusters of Rhizobium meliloti code for the early essential nodulation functions and a third influences nodulation efficiency. J Bacteriol 167:881–887

    Google Scholar 

  • Reiter W-D, Palm P, Yeats S (1989) Transfer RNA genes frequently serve as integration sites for procaryotic genetic elements. Nucleic Acids Res 17:1907–1914

    Google Scholar 

  • Sadowski P (1986) Site-specific recombinases: Changing partners and doing the twist. J Bacteriol 165:341–347

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger FS, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sherratt D (1989) Tn3 and related transposable elements: site-specific recombination and transposition. In: Berg DE, Howe MM (eds) Mobile DNA. American Society Microbiology, Washington, DC, pp 163–184

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Sváb Z, Kondorosi Å, Orosz L (1978) Specialized transduction of a cysteine marker by Rhizobium meliloti phage 16-3. J Gen Microbiol 106:321–327

    Google Scholar 

  • Szende K, Ördögh F (1960) Die lysogenic von Rhizobium meliloti. Naturwissenschaften 47:404–405

    Google Scholar 

  • Waldman AS, Goodman SD, Scocca JJ (1987) Nucleotide sequences and properties of the sites involved in lysogenic insertion of the bacteriophage HPlcl genome into the Haemophilus influenzae chromosome. J Bacteriol 169:238–246

    Google Scholar 

  • Willetts NS, Crowther C, Holloway BW (1981) The insertion sequence IS21 of R68.45 and the molecular basis for mobilization of the bacterial chromosome. Plasmid 4:30–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Kondorosi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papp, I., Dorgai, L., Papp, P. et al. The bacterial attachment site of the temperate Rhizobium phage 16-3 overlaps the 3′ end of a putative proline tRNA gene. Molec. Gen. Genet. 240, 258–264 (1993). https://doi.org/10.1007/BF00277064

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277064

Key words

Navigation