Advertisement

Journal of Mathematical Biology

, Volume 23, Issue 2, pp 163–185 | Cite as

What the hen can tell about her eggs: egg development on the basis of energy budgets

  • S. A. L. M. Kooijman
Article

Abstract

By a simple model involving the state variables size and storage, it is possible to describe a wide variety of observations on the feeding, growth, energy storage and reproduction of animals. The model is based on the assumption that reproduction, growth as well as maintenance depend on the stored energy only and not directly on feeding. If an egg is thought of as a non-feeding animal, the model predicts the respiration ontogeny and growth of the embryo inside the egg. These predictions seem to hold well for published data on the development of eggs of fish and ratite, precocial and altricial birds. The latter two are known to follow different respiration ontogenies, but both are described well, differing only in one (compound) parameter value. The model explains why the incubation times of eggs of different species tend to increase linearly with egg size to the power 1/4, and why kiwis and petrels, which lay relatively large eggs, have to brood them much longer than larger birds with eggs of the same size. Conversely, it explains why the small eggs of the (parasitic) European cuckoo, hatch earlier than the still smaller eggs of their tiny hosts.

Furthermore, it has been shown how the maintenance rate constant, which frequently appears in the microbial literature, can be obtained from measurements on the respiration and weight ontogeny in embryos, so linking independent lines of research. Application of the model shows an increase of the maintenance rate constant from bacteria, crustaceans, up to fish and birds, and a decrease from bacteria to green algae, suggesting lines of evolutionary development.

Key words

Adult-egg relation Egg respiration Maintenance rate constant Scaling relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ar, A., Rahn, H.: Interdependence of gas conductance, incubation length, and weight of the avian egg. In: Piiper, J. (ed.). Respiration function in birds. Springer: Berlin Heidelberg New York 1978Google Scholar
  2. Beverton, R. J. H., Holt, S. J.: On the dynamics of exploited fish populations. Fish Invest. Lond. Ser 2, 19 (1957)Google Scholar
  3. Brody, S.: Bioenergetics and growth. Rheinhold New York 1945Google Scholar
  4. Calder, W. A. I. I. I.: The kiwi and egg design: Evolution as a package deal. Bio Science 29, 461–467 (1979)Google Scholar
  5. Diekmann, O., Metz, J. A. J. (eds.): The dynamics of physiologically structured populations. Lect. Notes Biomathem. Springer: Berlin Heidelberg New York Tokyo to appear (1984)Google Scholar
  6. Diekmann, O., Metz, J. A. J., Kooijman, S. A. L. M., Heijmans, H. J. A. M.: Continuum population dynamics with an application to Daphnia magna. Nieuw Archief voor Wiskunde 4, 82–109 (1984)Google Scholar
  7. Duineveld, G. C. A., Jenness, M. I.: Differences in growth rates of the sea urchin Echinocardium cordatum as estimated by the parameter ω of the von Bertalanffy equation applied to skeletal rings. Mar. Ecol 19, 65–72 (1984)Google Scholar
  8. Guggisberg, C. A. W.: The crocodiles. David and Charles: Newton Abbot 1980Google Scholar
  9. Harrison, C.: A field guide to the nests, eggs and nestlings of european birds. Collins: London 1975Google Scholar
  10. Horner, J. R.: The nesting behaviour of dinosaurs. Sci. Am. 250 (4), 92–99 (1984)Google Scholar
  11. Hoyt, D. F.: Adaptation of avian eggs to incubation period: Variability around allometric regression is correlated with time. Am. Zool. 20, 417–425 (1980)Google Scholar
  12. Hoyt, D. F., Rahn, H.: Respiration of avian embryos—A comparative analysis. Respir. Physiol. 39, 255–264 (1980)Google Scholar
  13. Hoyt, D. F., Vleck, D., Vleck, D.: Metabolism of avian embryos: ontogeny and temperature effects in the ostrich. Condor 80, 265–271 (1978)Google Scholar
  14. König, C.: Vogels van Europa. Zomer and Keuning: Ede 1980Google Scholar
  15. Kooijman, S. A. L. M.: Population dynamics on basis of budgets. In: Diekmann, O., Metz, J. A. J. (eds.). The dynamics of physiologically structured populations. Lect Notes Biomath. Springer: Berlin Heidelberg New York Tokyo to appear (1984)Google Scholar
  16. Kooijman, S. A. L. M: Energy budgets can explain body size relations, submitted to J. Theor. Biol. (1985)Google Scholar
  17. Kooijman, S. A. L. M., Metz, J. A. J.: On the dynamics of chemically stressed populations: the deduction of population consequences from effects on individuals. Ecotox. Envir. Safety 8, 254–274 (1984)Google Scholar
  18. Nash, R. D. M.: The biology of Fries' goby, Lesueurigobius friesii (Malm) in the Firth of Clyde, Scotland, and a comparison with other stocks. J. Fish. Biol. 21, 69–85 (1982)Google Scholar
  19. Paine, R. T.: Growth and size distribution of the Brachiopod Terebratalia transversa sowerby. Pacific Sci. 23, 337–343 (1969)Google Scholar
  20. Peters, R. H.: The ecological implications of body size. Cambridge Univ. Press: Cambridge 1983Google Scholar
  21. Pettit, T. N., Grant, G. S., Whittow, G. C., Rahn, H., Pagenelli, C. V.: Respiratory gas exchange and growth of bonin petrel embryos. Physiol. Zool. 55, 162–170 (1982)Google Scholar
  22. Rafi, R. A., Kaufman, T. C.: Embryos, genes and evolution. Macmillan: New York 1983Google Scholar
  23. Rahn, H, Paganelli, C. V., Ar, A.: The avian egg: air-cell gas tension, metabolism and incubation time. Respir. Physiol. 22, 297–309 (1974)Google Scholar
  24. Rahn, H., Ar, H., Paganelli, C. V.: How bird eggs breathe. Sci. Am. 240 (2), 38–47 (1979)Google Scholar
  25. Rahn, H., Ar, A.: The avian egg: incubation time and water loss. Condor 76, 147–152 (1974)Google Scholar
  26. Romijn, C., Lokhorst, W.: Foetal respiration in the hen. Physiol. Comp. 2, 187–197 (1951)Google Scholar
  27. Schmidt, U.: Vampirfledermäuse. Die Neue Brehm-Bücherei Ziemsen: Wittenberg 1978Google Scholar
  28. Smith, S.: Early development and hatching. In: Brown M. E. (ed.) The physiology of fishes, Vol. 1, 323–359. Academic Press: New York 1957Google Scholar
  29. Tazawa, H., Visschedijk, A. H. J., Piiper, J.: Blood gas and acid-base status in chicken embryos with naturally varying egg shell conductance. Resp. Physiol. 54, 137–144 (1983)Google Scholar
  30. Vermeer, K.: The importance of plankton to Cassin's auklets during breeding. J. Plankton Res. 3, 315–329 (1981)Google Scholar
  31. Visschedijk, A. H. J.: The air space and embryonic respiration. British Poultry Sci. 9, 173–210 (1968)Google Scholar
  32. Visschedijk, A. H. J., Rahn, H.: Replacement of diffusive by convective gas transport in the developing hen's egg. Respir. Physiol. 52, 137–147 (1983)Google Scholar
  33. Vleck, C. M., Hoyt, D. F., Vleck, D.: Metabolism of avian embryos: patterns in altricial and precocial birds. Physiol. Zool. 52, 363–377 (1979)Google Scholar
  34. Vleck, C. M., Vleck, D., Hoyt, D. F.: Patterns of metabolism and growth in avian embryos. Am. Zool. 20, 405–416 (1980)Google Scholar
  35. Vleck, D., Vleck, C. M., Hoyt, D. F.: Metabolism of avian embryos: ontogeny of oxygen consumption in the rhea and emu. Physiol. Zool. 53, 125–135 (1980)Google Scholar
  36. Wangensteen, O. D., Rahn, H.: Respiratory gas exchange by avian embryo. Respir. Physiol. 11, 31–45 (1970/1971)Google Scholar
  37. Werth, L.: The growth of a young cuckoo. Brit. Birds 40, 331–334 (1947)Google Scholar
  38. White, F. N., Kinney, J. L.: Avian incubation. Science 186, 107–115 (1974)Google Scholar
  39. Wyllie, J.: The cuckoo. Batsford: London 1981Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • S. A. L. M. Kooijman
    • 1
  1. 1.Netherlands Organization for Applied Scientific Research, TNOAE DelftThe Netherlands

Personalised recommendations