Skip to main content
Log in

Predator-prey populations with parasitic infection

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A predator-prey model, where both species are subjected to parasitism, is developed and analyzed. For the case where there is coexistence of the predator with the uninfected prey, an epidemic threshold theorem is proved. It is shown that in the case where the uninfected predator cannot survive only on uninfected prey, the parasitization could lead to persistence of the predator provided a certain threshold of transmission is surpassed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R. M., May, R. M.: The invasion, persistence, and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond., B 314, 533–570 (1986)

    Google Scholar 

  • Aron, J. L., May, R. M.: The population dynamics of malaria. In: Anderson, R. M. (ed.) The population dynamics of infectious diseases, theory and application, pp. 139–179. London: Chapman and Hall 1982

    Google Scholar 

  • Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H. P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-parameter semigroups of positive operators. (Lect. Notes Math., vol. 1184) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Butler, G. J., Freedman, H. I., Waltman, P.: Uniformly persistent systems. Proc. Am. Math. Soc. 96, 425–430 (1986)

    Google Scholar 

  • Curio, E.: Behavior and parasitism, chap. 2. In: Mehlhom, K. (ed.) Parasitology in focus, pp. 149–160. Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  • Dietz, K.: The incidence of infectious diseases under the influence of seasonal fluctuations. (Lect. Notes Biomath., vol. 11, pp. 1–14) Berlin Heidelberg New York: Springer 1976

    Google Scholar 

  • Dobson, A. P.: The population biology of parasite-induced changes in host behavior. Q. Rev. Biol. 63, 139–165 (1988)

    Google Scholar 

  • Freedman, H. I.: Graphical stability, enrichment, and pest control by a natural enemy. Math. Biosci. 31, 207–225 (1976)

    Google Scholar 

  • Freedman, H. I.: Deterministic mathematical models in population ecology. HFR Consulting Ltd.: Edmonton, 1987

    Google Scholar 

  • Freedman, H. I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–231 (1984)

    Google Scholar 

  • Freedman, H. I., Waltman, P.: Persistence in a model of three competitive populations. Math. Biosci. 73, 89–101 (1985)

    Google Scholar 

  • Freedman, H. I., Wolkowicz, G. S. K.: Predator-prey systems with group defense: the paradox of enrichment revisited. Bull. Math. Biol. 48, 493–508 (1986)

    Google Scholar 

  • Gantmacher, F. R.: The theory of matrices, Chap. 13. Chelsea 1959

  • Hadeler, K. P., Dietz, K.: Nonlinear hyperbolic partial differential equations for the dynamics of parasite populations. Comput. Math. Appl. 9, 415–430 (1983)

    Google Scholar 

  • Hadeler, K. P.: Spread and age structure in epidemic models. In: Perspectives in Mathematics, Anniversary of Oberwolfach. Basel: Birkhäuser 1984

    Google Scholar 

  • Hadeler, K. P., Dietz, K.: Population dynamics of killing parasites which reproduce in the host. J. Math. Biol. 21, 45–65 (1984)

    Google Scholar 

  • Hofbauer, J., Sigmund, K.: Permanence for replicator equations. In: Kurzhansky, A. B., Sigmund, K.: Dynamical systems. (Lect. Notes. Econ. Math. Syst., vol. 287) Berlin Heidelberg New York: Springer 1987

    Google Scholar 

  • Holling, C. S.: Some characteristics of simple types of predation and parasitism, Can. Ent. 91, 385–398 (1959)

    Google Scholar 

  • Holmes, J. C., Bethel, W. M.: Modification of intermediate host behaviour by parasites. In: Canning, E. V., Wright, C. A. (eds.) Behavioural aspects of parasite transmission. Suppl. I to Zool. f. Linnean Soc. 51, 123–149 (1972)

  • Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond., A 115, 700–721 (1927)

    Google Scholar 

  • Kuang, Y., Freedman, H. I.: Uniqueness of limit cycles in Gause-type models of predator-prey systems. Math. Biosci. 88, 67–84 (1988)

    Google Scholar 

  • Kretzschmar, M.: A renewal equation with birth-death process as a model for parasitic infections. J. Math. Biol. 27, 191–221 (1989)

    Google Scholar 

  • Liu, L. P., Cheng, K. S.: Global stability of a predator-prey system. J. Math. Biol. 26, 65–71 (1988)

    Google Scholar 

  • MacDonald, G.: The analysis of equilibrium in malaria. Tropical Diseases Bulletin 49, 813–828 (1952)

    Google Scholar 

  • MacDonald, G.: The measurement of malaria transmission. Proc R. Soc. Medic. 48, 295–301 (1955)

    Google Scholar 

  • Bruce-Chwatt, L. J., Glanville, V. J. (eds.) Dynamics of tropical disease. Selected papers by G. Macdonald. Oxford: Oxford University Press 1973

    Google Scholar 

  • Mech, L. D., McRoberts, R. E., Peterson, R. O., Page, R. E.: Relationship of deer and moose populations to previous winter's snow. J. Anim. Ecol. 56, 615–627 (1987)

    Google Scholar 

  • Peterson, R. O., Page, R. E.: Wolf density as a predictor of predation rate. Swedish Wildlife Research Suppl. 1, 771–773 (1987)

    Google Scholar 

  • Peterson, R. O., Page R. E.: The rise and fall of isle Royale wolves, 1975–1986. J. Mamm. 69(I), 89–99 (1988)

    Google Scholar 

  • Rosenzweig, M. L.: Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)

    Google Scholar 

  • Waldstätter, R., Hadeler, K. P., Greiner G.: A Lotka-McKendrick model for a population structured by the level of parasitic infection. SIAM J. Math. Anal. 19, 1108–1118 (1988)

    Google Scholar 

  • Waltman, P.: Deterministic threshold models in the theory of epidemics. (Lect. Notes Biomath. vol. 1) Berlin Heidelberg New York: Springer 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Support by the Central Research Fund of the University of Alberta is gratefully acknowledged

Research partially supported by the Natural Sciences and Engineering Research Council of Canada, Grant No. NSERC A4823

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadeler, K.P., Freedman, H.I. Predator-prey populations with parasitic infection. J. Math. Biology 27, 609–631 (1989). https://doi.org/10.1007/BF00276947

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276947

Key words

Navigation