Skip to main content
Log in

emb-5, a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhabditis elegans, encodes a protein similar to the yeast nuclear protein SPT6

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

The emb-5 gene is required for the correct timing of division of gut precursor cells during gastrulation in Caenorhabditis elegans. We have now characterized the molecular structure of emb-5. The predicted emb-5-encoded protein (EMB-5) possesses an extremely acidic amino-terminus and overall similarity to the Saccharomyces cerevisiae nuclear protein SPT6, which has been shown to affect the transcription of a variety of genes and suggested to play a role in chromatin assembly or modification. EMB-5 may function in the control of cell cycle timing by modulating chromatin structure and consequently affects morphogenesis of C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin J, Kimble J (1989) Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans. Cell 58:565–571

    Google Scholar 

  • Babu P (1974) Biochemical genetics of Caenorhabditis elegans. Mol Gen Genet 135:39–44

    Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Google Scholar 

  • Campos-Ortega J, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer Verlag, Berlin Heidelberg, pp 173–180

    Google Scholar 

  • Cassada R, Isnenghi E, Culotti M, von Ehrenstein G (1981) Genetic analysis of temperature-sensitive embryogenesis mutants in Caenorhabditis elegans. Dev Biol 84:193–205

    Google Scholar 

  • Clark-Adams CD, Winston F (1987) The SPT6 gene is essential for growth and is required for δ-mediated transcription in Saccharomyces cerevisiae. Mol Cell Biol 7:679–686

    Google Scholar 

  • Clark-Adams CD, Norris D, Osley MA, Fassler JS, Winston F (1988) Changes in histone gene dosage alter transcription in yeast. Genes Dev 2:150–159

    Google Scholar 

  • Collins J, Saari B, Anderson P (1987) Activation of a transposable element in germ line but not in the soma of C. elegans. Nature 328:726–728

    Google Scholar 

  • Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1980) Promoter sequences of eukaryotic protein-coding genes. Science 209:1406–1414

    Google Scholar 

  • Coulson A, Sulston J, Brenner S, Karn J (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 83:7821–7825

    Google Scholar 

  • Denich KTR, Schierenberg E, Isnenghi E, Cassada R (1984) Cell-lineage and developmental defects of temperature-sensitive embryonic arrest mutants of the nematode Caenorhabditis elegans. Roux's Arch Dev Biol 193:164–179

    Google Scholar 

  • Denis CL (1984) Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II. Genetics 108:833–844

    Google Scholar 

  • Denis CL, Malvar T (1990) The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentive and spt-mediated gene expression. Genetics 124:283–291

    Google Scholar 

  • Deppe U, Schierenberg E, Cole T, Krieg C, Schmitt D, Yoder B, von Ehrenstein G (1978) Cell lineages of the embryo of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 75:376–380

    Google Scholar 

  • Earnshaw WC (1987) Anionic regions in nuclear proteins. J Cell Biol 105:1479–1482

    Google Scholar 

  • Emmons SW (1988) The genome. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 47–79

    Google Scholar 

  • Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32:55–65

    Google Scholar 

  • Emmons SW, Klass MR, Hirsh D (1979) Analysis of the constancy of DNA sequence during development and evolution of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 76:1333–1337

    Google Scholar 

  • Fassler JS, Winston F (1988) Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:203–212

    Google Scholar 

  • Fire A (1986) Integrative transformation of Caenorhabditis elegans. EMBO J 5:2673–2681

    Google Scholar 

  • Fitzgerald M, Shenk T (1981) The sequence 5′-AAUAAA-3′ forms part of the recognition site for polydenylation of late SV40 mRNAs. Cell 24:251–260

    Google Scholar 

  • Ghiara JB, Richardson HE, Sugimoto K, Henze M, Lew DJ, Wittenberg C, Reed SI (1991) A cyclin B homolog in S. cerevisiae: chronic activation of Cdc28 protein kinase by cyclin prevents exit from mitosis. Cell 65:163–174

    Google Scholar 

  • Hirsh D, Oppenheim D, Klass M (1976) Development of the reproductive system of Caenorhabditis elegans. Dev Biol 49:200–219

    Google Scholar 

  • Hubbard SC, Ivatt RJ (1981) Synthesis and processing of asparagine-linked oligosaccharides. Annu Rev Biochem 50:555–583

    Google Scholar 

  • Isnenghi E, Cassada R, Smith K, Denich K, Radina K, von Ehrenstein G (1983) Maternal effect and temperature-sensitive period of mutants affecting embryogenesis in Caenorhabditis elegans. Dev Biol 98:465–480

    Google Scholar 

  • Karn J, Brenner S, Barnett L (1983) New bacteriophage lambda vectors with positive selection for cloned inserts. Methods Enzymol 100:3–19

    Google Scholar 

  • Kim SK, Horvitz HR (1990) The Caenorhabditis elegans gene fin-10 is broadly expressed while required specifically for the determination of vulval cell fates. Genes Dev 4:357–371

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mello CC, Kramer JM, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10:3959–3970

    Google Scholar 

  • Meyer BJ, Carson LP (1986) Caenorhabditis elegans compensate for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell 47:871–881

    Google Scholar 

  • Miwa J, Schrierenberg E, Miwa S, von Ehrenstein G (1980) Genetics and mode of expression of temperature-sensitive mutations arresting embryonic development in Caenorhabditis elegans. Dev Biol 76:160–174

    Google Scholar 

  • Neigeborn L, Rubin K, Carlson M (1986) Suppressors of snf2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast. Genetics 112:741–753

    Google Scholar 

  • Neigeborn L, Celenza JL, Carlson M (1987) SSN20 is an essential gene with mutant alleles that suppress defects in SUC2 transcription in Saccharomyces cerevisiae. Mol Cell Biol 7:672–678

    Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508

    Google Scholar 

  • Pines J, Hunter T (1989) Isolation of a human cyclin cDNA: Evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell 58:833–846

    Google Scholar 

  • Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence: Identification of a class of bipartite nuclear targeting sequence. Cell 64:615–623

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schierenberg E, Miwa J, von Ehrenstein G (1980) Cell lineage and developmental defects of temperature-sensitive embryonic arrest mutants in Caenorhabditis elegans. Dev Biol 76:141–159

    Google Scholar 

  • Staden R (1982) An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Res 10:2951–2961

    Google Scholar 

  • Stinchcomb DT, Shaw JE, Carr SH, Hirsh D (1985) Extrachromosomal DNA Transformation of Caenorhabditis elegans. Mol Cell Biol 5:3484–3496

    Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100:64–119

    Google Scholar 

  • Surana U, Robitsch H, Price C, Schuster T, Fitch I, Futcher AB, Nasmyth K (1991) The role of CDC28 and cyclins during mitosis in budding yeast S. cerevisiae. Cell 65:145–161

    Google Scholar 

  • Swanson MS, Carlson M, Winston F (1990) SPT6, an essential gene that affects transcription in Saccharomyces cerevisiae, encodes a nuclear protein with an extremely acidic amino terminus. Mol Cell Biol 10:4935–4941

    Google Scholar 

  • Vieira J, Wessing J (1987) Production of single-stranded plasmid DNA. Meth Enzymol 153:3–11

    Google Scholar 

  • Winston F, Chaleff DT, Valent B, Fink GR (1984) Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 107:179–197

    Google Scholar 

  • Winston F, Dollard C, Malone EA, Clare J, Kapakos JG, Farabaugh P, Minehart PL (1987) Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115:649–654

    Google Scholar 

  • Wood WB, Hecht R, Carr S, Vanderslice R, Wolf N, Hirsh D (1980) Parental effects and phenotypic characterization of mutations that affect early development of Caenorhabditis elegans. Dev Biol 74:446–469

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Isono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishiwaki, K., Sano, T. & Miwa, J. emb-5, a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhabditis elegans, encodes a protein similar to the yeast nuclear protein SPT6. Molec. Gen. Genet. 239, 313–322 (1993). https://doi.org/10.1007/BF00276929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276929

Key words

Navigation