Skip to main content

On Saint-Venant's principle and the torsion of solids of revolution

This is a preview of subscription content, access via your institution.

References

  1. Mises, R. von, On Saint-Venant's principle. Bulletin of the American Mathematical Society 51, 555 (1945).

    Google Scholar 

  2. Boussinesq, J., Applications des potentiels. Paris: Gauthier-Villars 1885.

    Google Scholar 

  3. Sternberg, E., On Saint-Venant's principle. Quarterly of Applied Mathematics 11, 393 (1954).

    Google Scholar 

  4. Keller, H.B., Saint-Venant's procedure and Saint-Venant's principle. Quarterly of Applied Mathematics 22, 293 (1965).

    Google Scholar 

  5. Toupin, R.A., Saint-Venant's principle. Archive for Rational Mechanics and Analysis 18, 83 (1965).

    Google Scholar 

  6. Knowles, J.K., On Saint-Venant's principle in the two-dimensional linear theory of elasticity. Archive for Rational Mechanics and Analysis 21, 1 (1966).

    Google Scholar 

  7. Michell, J.H., The uniform torsion and flexure of incomplete tores, with application to helical springs. Proceedings of the London Mathematical Society 31, 130 (1899).

    Google Scholar 

  8. Mindlin, R.D., & M.G. Salvadori, Analogies, Handbook of Experimental Stress Analysis, edited by M. Hetényi. New York: John Wiley & Sons 1950.

    Google Scholar 

  9. Föppl, A., Über die Torsion von runden Stäben mit veränderlichem Durchmesser. Sitzungsberichte der mathematisch-physikalischen Klasse, Akademie der Wissenschaften, München 35, 249 (1905).

  10. Purser, F., Some applications of Bessel's functions to physics. Proceedings of the Royal Irish Academy 26, 25 (1906).

    Google Scholar 

  11. Tedone, O., Sulla torsione di un cilindro di rotazione. Atti della Reale Accademia dei Lincei 20, 617 (1911).

    Google Scholar 

  12. Gould, S.H., Variational Methods for Eigenvalue Problems. Toronto: University of Toronto Press 1957.

    Google Scholar 

  13. Courant, R., & D. Hilbert, Methods of Mathematical Physics, Volume I. New York: Interscience Publ. 1953.

    Google Scholar 

  14. Chandrasekhar, S., & D. Elbert, The roots of Y n(λ η)J n(λ)−J n(λ η)Y n(λ)=0. Proceedings of the Cambridge Philosophical Society 50, 266 (1954).

    Google Scholar 

  15. Diaz, J.B., & L.E. Payne, Mean-value theorems in the theory of elasticity. Proceedings of the Third U.S. National Congress of Applied Mechanics, p. 293, Providence, 1958.

  16. Roseman, J.J., A pointwise estimate for the stress in a cylinder and its application to Saint-Venant's principle. Archive for Rational Mechanics and Analysis 21, 23 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Knowles, J.K., Sternberg, E. On Saint-Venant's principle and the torsion of solids of revolution. Arch. Rational Mech. Anal. 22, 100–120 (1966). https://doi.org/10.1007/BF00276511

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276511

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism