AdamsMWW (1990) The metabolism of hydrogen by extreme thermophilic, sulfur dependent archaebacteria. FEMS Microbiol Rev 75: 219–238
Google Scholar
AonoS, BryantFO, AdamsMWW (1989) A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Bacteriol 171: 3433–3439
Google Scholar
BlumentalsII, ItohM, OlsenGJ, KellyRM (1990) Role of polysulfides in reduction of elemental sulfur by the hyperthermophilic archaebacterium Pyrococcus furiosus. Appl Environ Microbiol 56: 1255–1262
Google Scholar
Bonch-OsmolovskayaEA, StetterKO (1991) Interspecies hydrogen transfer in cocultures of thermophilic Archaea. Syst Appl Microbiol 14: 205–208
Google Scholar
BradfordMM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254
Google Scholar
BryantFO, AdamsMWW (1989) Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 264: 5070–5079
Google Scholar
ConsalviV, ChiaraluceR, PolitiL, VaccaroR, DeRosaM, ScandurraR (1991) Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem 202: 1189–1196
Google Scholar
EdwardsMR, GilroyFV, JimenezMB, O'SullivanWJ (1989) Alanine is a major end product of metabolism by Giardial lamblia: a proton nuclear magnetic resonance study. Mol Biochem Parasitol 37: 19–26
Google Scholar
FialaG, StetterKO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145: 56–61
Google Scholar
GottschalkG (1986) Bacterial metabolism, 2nd edn. Springer, Berlin Heidelberg New York Tokyo
Google Scholar
IanottiEL, KafkewitzD, WolinMJ, BryantMP (1973) Glucose fermentation products of Ruminococcus albus in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H2. J Bacteriol 114: 1231–1240
Google Scholar
JonesWJ, LeighJA, MayerF, WoeseCR, WolfeRS (1983) Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136: 254–261
Google Scholar
KengenSWM, LuesinkEJ, StamsAJM, ZehnderAJB (1993) Purification and characterization of an extremely thermostable β-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem 213: 305–312
Google Scholar
LamedRJ, LobosJH, SuTM (1988) Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microbiol 54: 1216–1221
Google Scholar
LowryOH, RosebroughNJ, FarrA, RandallRJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275
Google Scholar
MalikB, SuWW, WaldHL, BlumentalsII, KellyRM (1989) Growth and gas production for hyperthermophilic archaebacterium, Pyrococcus furiosus. Biotechnol Bioeng 34: 1050–1057
Google Scholar
McCartyPL (1975) Stoichiometry of biological reactions. Prog Water Technol 7: 157–170
Google Scholar
MukundS, AdamsMWW (1990) Characterization of a tungsteniron-sulfur protein exhibiting novel spectroscopic and redox properties from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 265: 11508–11516
Google Scholar
MukundS, AdamsMWW (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. J Biol Chem 266: 14208–14216
Google Scholar
PagetTA, RaynerMH, ShippDWE, LloydD (1990) Giardia lamblia produces alanine anaerobically but not in the presence of oxygen. Mol Biochem Parasitol 42: 63–68
Google Scholar
ParkJB, FanC, HoffmanBM, AdamsMWW (1991) Potentiometric and electron nuclear double resonance properties of the two spin forms of the [4 Fe−4 S]+ cluster in the novel ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 266: 19351–19356
Google Scholar
RobbFT, ParkJB, AdamsMWW (1992) Characterization of an extremely thermostable glutamate dehydrogenase: a key enzyme in the primary metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Biochim Biophys Acta 1120: 267–272
Google Scholar
SchäferT, SchönheitP (1991) Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Arch Microbiol 155: 366–377
Google Scholar
SchäferT, SchönheitP (1992) Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol 158: 188–202
Google Scholar
SchäferT, SchönheitP (1993) Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway. Arch Microbiol 159: 354–363
Google Scholar
SchichoRN, SnowdenLJ, MukundS, ParkJB, AdamsMWW, KellyRM (1993a) Influence of tungsten on metabolic patterns in Pyrococcus furiosus, a hyperthermophilic archaeon. Arch Microbiol 159: 380–385
Google Scholar
SchichoRN, MaK, AdamsMWW, KellyRM (1993b) Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 175: 1823–1830
Google Scholar
StamsAJM, DijkJBvan, DijkemaC, PluggeCM (1993) Growth of syntrophic propionate oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59: 1114–1119
Google Scholar
StetterKO, FialaG, HuberG, HuberR, SegererA (1990) Hyperthermophilic microorganisms. FEMS Microbiol Lett 75: 117–124
Google Scholar
ThauerRK, JungermannK, DeckerK (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180
Google Scholar
UhlenbuschI, SahmH, SprengerGA (1991) Expression of an l-alanine dehydrogenase gene in Zymomonas mobilis and excretion of l-alanine. Appl Environ Microbiol 57: 1360–1366
Google Scholar
WeimerPJ, ZeikusJG (1977) Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol 33: 289–297
Google Scholar
WolinEA, WolinMJ, WolfeRS (1963) Formation of methane by bacterial extracts. J Biol Chem 238: 2882–2886
Google Scholar
ZehnderAJB, HuserBA, BrockTD, WuhrmannK (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 124: 1–11
Google Scholar