Skip to main content
Log in

Steady, structured shock waves. Part 1: Thermoelastic materials

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rice, M. H., R. G. McQueen, & J. M. Walsh, Compression of Solids by Strong Shock Waves, in: Solid State Physics, 6, 1–63, ed. F. Seitz & D. Turnbull, Academic Press, New York and London, 1958.

    Google Scholar 

  2. McQueen, R. G., S. P. Marsh, J. W. Taylor, J. N. Fritz, & W. J. Carter, The Equation of State of Solids from Shock Wave Studies, in: High-Velocity Impact Phenomena, 294–417, ed. R. Kinslow, Academic Press, New York and London, 1970.

    Google Scholar 

  3. Johnson, J. N., & L. M. Barker, Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. Jour. Appl. Phys. 40, 4321–4334 (1969).

    Google Scholar 

  4. Barker, L. M., Fine Structure of Compression and Release Wave Shapes in Aluminum Measured by the Velocity Interferometer Technique, in: Behavior of Dense Media under High Dynamic Pressure, 483–504, Gordon and Breach, New York, 1968.

    Google Scholar 

  5. Grady, D. E., Strain rate dependence of the effective viscosity under steady wave shock compression. Appl. Phys. Lett. 38, 825–826 (1981).

    Google Scholar 

  6. Swegle, J. W., & D. E. Grady, Shock viscosity and the prediction of shock wave risetimes. J. Appl. Phys. 58, 692–701 (1985).

    Google Scholar 

  7. Dunn, J. E., & D. E. Grady, Strain Rate Dependence in Steady Plastic Shock Waves, in: Shock Waves in Condensed Matter, 359–364, ed. Y. M. Gupta, Plenum Press, New York, 1986.

    Google Scholar 

  8. Dunn, J. E., The Evolution of Plastic Strain in Steady, Plastic Shock Waves, in: Shock Waves in Condensed Matter—1987, 211–214, ed. S. C. Schmidt & N. C. Holmes, North-Holland, Amsterdam, 1987.

    Google Scholar 

  9. Gilbarg, D., & D. Paolucci, The structure of shock waves in the continuum theory of fluids. J. Rational Mech. Anal. 2, 617–642 (1953).

    Google Scholar 

  10. Grad, H., The profile of a steady plane shock wave. Comm. Pure Appl. Math. 5, 257–300 (1952).

    Google Scholar 

  11. Band, W., Studies in the theory of shock propagation in solids. J. Geophys. Res. 65, 695–719 (1960).

    Google Scholar 

  12. Bethe, H. A., The Theory of Shock Waves for an Arbitrary Equation of State. Office of Scientific Research and Development, Report No. 545 (1942).

  13. Weyl, H., Shock waves in arbitrary fluids. Comm. Pure Appl. Math. 2, 103–122 (1949).

    Google Scholar 

  14. Courant, R., & K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience, New York and London, 1948.

    Google Scholar 

  15. Serrin, J., Mathematical Principles of Classical Fluid Dynamics. Flügge's Handbuch der Physik, VIII/1, Springer, Berlin-Heidelberg-New York, 1957.

    Google Scholar 

  16. Dunn, J. E., & R. Fosdick, A Dissipation Principle and Its Consequences for Structured Shock Waves in Thermoelastic Materials, in: Shock Waves in Condensed Matter—1987, 215–218, ed. S. C. Schmidt & N. C. Holmes, North-Holland, Amsterdam, 1987.

    Google Scholar 

  17. Hagan, R., & J. Serrin, One-Dimensional Shock Layers in Korteweg Fluids, in: Phase Transformations and Material Instabilities in Solids, 113–127, ed. M. E. Gurtin, Academic Press, New York and London, 1984.

    Google Scholar 

  18. Rayleigh, J., Aerial plane waves of finite amplitude. Proc. Royal Soc. London Series A, 84, 247–284 (1910).

    Google Scholar 

  19. Rankine, W. J. M., On the thermodynamic theory of waves of finite longitudinal disturbance. Trans. Royal Soc. London 160, 277–288 (1870).

    Google Scholar 

  20. Earnshaw, the Rev. S., On the mathematical theory of sound. Trans. Royal Soc. London 150, 133–148 (1860).

    Google Scholar 

  21. Jouguet, E., Sur la propagation des discontinuitiés dans les fluides. C. R. Acad. Sci. Paris 132, 673–676 (1901).

    Google Scholar 

  22. Jouguet, E., Remarques sur la propagation des percussions dans les gaz. C. R. Acad. Sci. Paris 138, 1685–1688 (1904).

    Google Scholar 

  23. Zemplén, G., Sur l'impossibilité des ondes choc négative dans les gaz. C. R. Acad. Sci. Paris 141, 710–712 (1905).

    Google Scholar 

  24. Hadamard, J., Remarque sur la note de M. Gyözö Zemplén. C. R. Acad. Sci. Paris 141, 713 (1905).

    Google Scholar 

  25. Kormer, S. B., A. I. Funtikov, V. D. Urlin, & A. N. Kolesnikova, Dynamic compression of porous metals and the equation of state with variable specific heat at high temperatures. Soviet Phys. JETP 15, 477–488 (1962).

    Google Scholar 

  26. Nellis, W. J., N. C. Holmes, A. C. Mitchell, & M. van Thiel, Phase transition in fluid nitrogen at high densities and temperatures. Phys. Rev. Lett. 53, 1661–1664 (1984).

    Google Scholar 

  27. Radousky, H. B., W. J. Nellis, M. Ross, D. C. Hamilton, & A. C. Mitchell, Molecular dissociation and shock-induced cooling in fluid nitrogen at high densities and temperatures. Phys. Rev. Lett. 57, 2419–2422 (1986).

    Google Scholar 

  28. Landau, L. D., & E. M. Lifschitz, Fluid Mechanics. Pergamon Press, Oxford and New York, 1959.

    Google Scholar 

  29. Zel'dovich, Y. B., & Y. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1 & 2. Academic Press, New York and London, 1967.

    Google Scholar 

  30. Serrin, J., & Y. C. Whang, On the entropy change through a shock layer. J. Aerospace Sci. 28, No. 12 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To James Serrin, with affection and admiration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, J.E., Fosdick, R.L. Steady, structured shock waves. Part 1: Thermoelastic materials. Arch. Rational Mech. Anal. 104, 295–365 (1988). https://doi.org/10.1007/BF00276431

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276431

Keywords

Navigation