Skip to main content
Log in

Survival in continuous structured populations models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The extended McKendrick-von Foerster structured population model is employed to derive a nonautonomous ordinary differential equation model of a population. The derivation assumes that the individual life history can be delineated into several physiological stages. We study the persistence of the population when the model is autonomous and base the nonautonomous survival analysis on the autonomous case and a comparison principle. A brief excursion into alternate life history strategies is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Caswell, H.: Matrix methods and the analysis of complex plant life cycles. In: Gross, L. J., Miura, R. M. (eds.) Some mathematical questions in biology, plant biology. (Lectures on Mathematics in the Life Sciences, Vol. 18, pp. 171–233.) AMS: Providence, RI, 1986

    Google Scholar 

  • Cushing, J. M.: Equilibria and oscillations in age-structured population growth models. In: Shukla, J. B., Hallam, T. G., Capasso, V. (eds.) Mathematical modelling of environmental and ecological systems, pp. 153–175. New York: Elsevier 1987

    Google Scholar 

  • Frauenthal, J. C.: Mathematical modeling in epidemiology. Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  • Freedman, H. I., Waltman, P.: Mathematical analysis of some three species food chain models. Math. Biosci. 33, 257–276 (1977)

    Google Scholar 

  • Freedman, H. I., Waltman, P.: Persistence in models of three interacting predator-prey populations. Math. Biosci. 68, 213–233 (1984)

    Google Scholar 

  • Freedman, H. I., Waltman, P.: Persistence in a model of three competitive populations. Math. Biosci. 73, 89–101 (1985)

    Google Scholar 

  • Gard, T. C.: Persistence in food webs. In: Levin, J. A., Hallam, T. G. (eds.) Mathematical ecology: Proceedings of the conference (Lect. Notes Biomath., vol. 54, pp. 208–219) Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  • Gard, T. C., Hallam, T. G.: Persistence in food webs: I Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)

    Google Scholar 

  • Gazis, D. C., Montroll, E. W., Ryniker, J. E.: Age-specific, deterministic model of predator prey populations: application to Isle Royale. IBM J. Res. Dev. 17, 47–53 (1973)

    Google Scholar 

  • Gurney, W. S. C., Nisbet, R. M., Blythe, S. P.: The systematic formulation of models of stage-structured populations, In: Metz, J. A. J., Dekmann, O. (eds.) (Lect. Notes Biomath., vol. 68, pp. 474–494) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Hallam, T. G., Lassiter, R. R., Kooijman, S. A. L. M.: Effects of toxicants on aquatic populations. Applied mathematical ecology. Berlin Heidelberg New York: Springer (1988a)

    Google Scholar 

  • Hallam, T. G., Lassiter, R. R., Li, J., Suarez, L.: Modelling individuals employing an integrated energy response: Application to Daphnia. (To appear) (1988b)

  • Hallam, T. G., Ma, Z.: Persistence in population models with demographic fluctuations. J. Math. Biol. 24, 327–340 (1986)

    Google Scholar 

  • Hallam, T. G., Ma, Z.: On density and extinction in continuous population models. J. Math. Biol. 25, 191–201 (1987)

    Google Scholar 

  • Hastings, A.: Age-dependent predation is not a simple process. I. Continuous time models. Theor. Popul. Biol. 23, 347–362 (1983)

    Google Scholar 

  • Hastings, A.: Interacting age structured populations. In: Hallam, T. G., Levin, S. A. (eds.) Mathematical ecology: An introduction (Biomathematics, vol. 17, pp. 286–294) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Kooijman, S. A. L. M.: Population dynamics on basis on budgets. In: Metz, J. A. J., Diekmann, O., (eds.) The dynamics of physiologically structured populations (Lect. Notes Biomath., vol. 68, pp. 266–297) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Kooijman, S. A. L. M., Metz, J. A. J.: On the dynamics of chemically stressed populations: the deduction of populations consequences from effects on individuals. Ecotox. Env. Saf. 8, 254–274 (1984)

    Google Scholar 

  • Lakshmikantham, V., Leela, S.: Differential and integral inequalities, vol. I. New York: Academic Press 1969

    Google Scholar 

  • Metz, J. A. J., Diekmann, O.: The dynamics of physiologically structured populations (Lect. Notes Biomath., vol. 68) Berlin Heidelberg New York: Springer 1986

    Google Scholar 

  • Plemmons, R. V.: M-matrix characterizations. I. Nonsingular M-matrices. Linear Algebra Appl. 18, 175–188 (1977)

    Google Scholar 

  • Reddingius, J.: Notes on the mathematical theory of epidemics. Acta Biotheor. 20, 125–157 (1971)

    Google Scholar 

  • Smith, R. H., Mead, R.: Age structure and stability in models of prey predator systems. Theor. Popul. Biol. 6, 308–322 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the U.S. Environmental Protection Agency under cooperative agreement CR 813353010

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Hallam, T.G. Survival in continuous structured populations models. J. Math. Biology 26, 421–433 (1988). https://doi.org/10.1007/BF00276371

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276371

Key words

Navigation