Skip to main content
Log in

Biased intrachromosomal gene conversion in a chromosome lineage

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A model for the evolution of a family of tandemly repeated genes in a single chromosome lineage under intrachromosomal gene conversion [43] is analyzed further and extended. Direct and diffusion approximations are derived for the exact fixation probabilities, mean time to fixation or loss, and mean conditional fixation time of Nagylaki and Petes [43]. The distribution of the number of variant repeats under the joint action of gene conversion and reversible mutation is investigated; exact and approximate expressions are derived for the stationary distribution. It is shown that conversional bias greatly increases the amount of sequence homogeneity at equilibrium. The diffusion processes studied here also apply to selection and mutation in a finite population, and some new results are established for that classical problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. A. (eds.): Handbook of mathematical functions, pp. 1020–1030. Washington, D.C.: National Bureau of Standards 1964

    Google Scholar 

  2. Akin, E., Losert, V.: Evolutionary dynamics of zero-sum games. J. Math. Biol. 20, 231–258 (1984)

    Google Scholar 

  3. Courant, R., Hilbert, D.: Methods of mathematical physics. Vol. II. New York: Interscience 1962

    Google Scholar 

  4. Cox, D. R., Miller, H. D.: The theory of stochastic processes. London: Chapman and Hall 1965

    Google Scholar 

  5. Crow, J. F., Kimura, M.: An introduction to population genetics theory. New York: Harper and Row 1970

    Google Scholar 

  6. Dynkin, E. B.: Markov processes. Vol. II. Berlin: Springer-Verlag 1965

    Google Scholar 

  7. Erdélyi, A.: Tables of integral transforms. Vol. I. New York: McGraw-Hill 1954

    Google Scholar 

  8. Ethier, S. N.: Limit theorems for absorption times of genetic models. Ann. Prob. 7, 622–638 (1979)

    Google Scholar 

  9. Ethier, S. N., Nagylaki, T.: Diffusion approximations of Markov chains with two time scales and applications to population genetics. Adv. Appl. Prob. 12, 14–49 (1980)

    Google Scholar 

  10. Ethier, S. N., Nagylaki, T.: Diffusion approximations of Markov chains with two time scales and applications to population genetics. II. In preparation (1985)

  11. Ewens, W. J.: Numerical results and diffusion approximations in a genetic process. Biometrika 50, 241–249 (1963)

    Google Scholar 

  12. Ewens, W. J.: The mean time for absorption in a process of genetic type. J. Aust. Math. Soc. 3, 375–383 (1963)

    Google Scholar 

  13. Ewens, W. J.: The pseudo-transient distribution and its uses in genetics. J. Appl. Prob, 1, 141–156 (1964)

    Google Scholar 

  14. Ewens, W. J.: Population genetics. London: Methuen 1969

    Google Scholar 

  15. Ewens, W. J.: Conditional diffusion processes in population genetics. Theor. Pop. Biol. 4, 21–30 (1973)

    Google Scholar 

  16. Ewens, W. J.: Mathematical population genetics. Berlin: Springer-Verlag 1979

    Google Scholar 

  17. Feller, W.: Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung. Acta Biotheor. 5, 11–40 (1939)

    Google Scholar 

  18. Feller, W.: Diffusion processes in genetics. In: Neyman, J. (ed.): Proc. 2nd Berkeley Symp. Math. Stat. Prob., pp. 227–246. Berkeley: University of California Press 1951

    Google Scholar 

  19. Feller, W.: Two singular diffusion problems. Ann. Math. 54, 173–181 (1951)

    Google Scholar 

  20. Feller, W.: The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55, 468–519 (1952)

    Google Scholar 

  21. Gautschi, W., Cahill, W. F.: Exponential integral and related functions. In: Abramowitz, M., Stegun, I. A. (eds.): Handbook of mathematical functions, pp. 227–251. Washington, D.C.: National Bureau of Standards 1964

    Google Scholar 

  22. Gradshteyn, I. S., Ryzhik, I. M.: Table of integrals, series, and products, 4th edition. New York: Academic Press 1965

    Google Scholar 

  23. Karlin, S., McGregor, J.: The number of mutant forms maintained in a population. In: LeCam, L., Neyman, J. (eds.): Proc. 5th Berkeley Symp. Math. Stat. Prob. Vol. IV, pp. 415–438. Berkeley: University of California Press 1967

    Google Scholar 

  24. Karlin, S., Taylor, H. M.: A second course in stochastic processes. New York: Academic Press 1981

    Google Scholar 

  25. Kimura, M.: Some problems of stochastic processes in genetics. Ann. Math. Stat. 28, 882–901 (1957)

    Google Scholar 

  26. Kimura, M.: On the probability of fixation of mutant genes in a population. Genetics 47, 713–719 (1962)

    Google Scholar 

  27. Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutation. Genetics 61, 893–903 (1969)

    Google Scholar 

  28. Kimura, M., Ohta, T.: The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969)

    Google Scholar 

  29. Kolmogorov, A.: Über die analytischen Methoden der Wahrscheinlichkeitsrechnung. Math. Ann. 104, 415–458 (1931)

    Google Scholar 

  30. Lamb, B. C., Helmi, S.: The extent to which gene conversion can change allele frequencies in populations. Genet. Res. 39, 199–217 (1982)

    Google Scholar 

  31. Luke, Y. L.: The special functions and their approximations. Vol. I. New York: Academic Press 1969

    Google Scholar 

  32. Malécot, G.: La diffusion des gènes dans une population mendélienne. Compt. Rend. Acad. Sci. 221, 340–343 (1945)

    Google Scholar 

  33. Malécot, G.: Les mathématiques de l'hérédité. Paris: Masson 1948. Extended translation: The mathematics of heredity. San Francisco: Freeman 1969

    Google Scholar 

  34. Malécot, G.: Les processus stochastiques et la méthode des fonctions génératrices ou caractéris-tiques. Publ. Inst. Stat. Univ. Paris 1, Fasc. 3, 1–16 (1952)

    Google Scholar 

  35. Moran, P. A. P.: Random processes in genetics. Proc. Camb. Phil. Soc. 54, 60–71 (1958)

    Google Scholar 

  36. Moran, P. A. P.: The effect of selection in a haploid genetic population. Proc. Camb. Phil. Soc. 54, 463–467 (1958)

    Google Scholar 

  37. Moran, P. A. P.: The survival of a gene under selection. J. Aust. Math. Soc. 1, 121–126 (1960)

    Google Scholar 

  38. Moran, P. A. P.: The survival of a gene under selection. II. J. Aust. Math. Soc. 1, 485–491 (1960)

    Google Scholar 

  39. Nagylaki, T.: Evolution of a large population under gene conversion. Proc. Natl. Acad. Sci. USA 80, 5941–5945 (1983)

    Google Scholar 

  40. Nagylaki, T.: Evolution of a finite population under gene conversion. Proc. Natl. Acad. Sci. USA 80, 6278–6281 (1983)

    Google Scholar 

  41. Nagylaki, T.: The evolution of multigene families under intrachromosomal gene conversion. Genetics 106, 529–548 (1984)

    Google Scholar 

  42. Nagylaki, T.: Evolution of multigene families under interchromosomal gene conversion. Proc. Natl. Acad. Sci. USA 81, 3796–3800 (1984)

    Google Scholar 

  43. Nagylaki, T., Petes, T. D.: Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics 100, 315–337 (1982)

    Google Scholar 

  44. Oberhettinger, F.: Hypergeometric functions. In: Abramowitz, M., Stegun, I. A. (eds.): Handbook of mathematical functions, pp. 555–566. Washington, D.C.: National Bureau of Standards 1964

    Google Scholar 

  45. Ohta, T.: Allelic and nonallelic homology of a supergene family. Proc. Natl. Acad. Sci. USA 79, 3251–3254 (1982)

    Google Scholar 

  46. Ohta, T.: Time until fixation of a mutant belonging to a multigene family. Genet. Res. 41, 47–55 (1983)

    Google Scholar 

  47. Ohta, T.: On the evolution of multigene families. Theor. Pop. Biol. 23, 216–240 (1983)

    Google Scholar 

  48. Ohta, T.: Some models of gene conversion for treating the evolution of multigene families. Genetics 106, 517–528 (1984)

    Google Scholar 

  49. Ohta, T.: Population genetics theory of concerted evolution and its application to the immunoglobulin V gene tree. J. Mol. Evol. 20, 274–280 (1984)

    Google Scholar 

  50. Ohta, T., Dover, G. A.: Population genetics of multigene familes that are dispersed into two or more chromosomes. Proc. Natl. Acad. Sci. USA 80, 4079–4083 (1983)

    Google Scholar 

  51. Ohta, T., Dover, G. A.: The cohesive population genetics of molecular drive. Genetics 108, 501–521 (1984)

    Google Scholar 

  52. Olver, F. W. J.: Bessel functions of integer order. In: Abramowitz, M., Stegun, I. A. (eds.): Handbook of mathematical functions, pp. 355–433. Washington, D.C.: National Bureau of Standards 1964

    Google Scholar 

  53. Slater, L. J.: Confluent hypergeometric functions. In: Abramowitz, M., Stegun, I. A. (eds.): Handbook of mathematical functions, pp. 503–535. Washington, D.C.: National Bureau of Standards1964

    Google Scholar 

  54. Trotter, H. F.: Approximation of semi-groups of operators. Pac. J. Math. 8, 887–919 (1958)

    Google Scholar 

  55. Walsh, J. B.: Role of biased gene conversion in one-locus neutral theory and genome evolution. Genetics 105, 461–468 (1983)

    Google Scholar 

  56. Walsh, J. B.: Interaction of selection, biased gene conversion and genetic drift in a multigene family in the weak-conversion limit. Proc. Natl. Acad. Sci. USA, in press (1985)

  57. Watterson, G. A.: Markov chains with absorbing states (a genetic example). Ann. Math. Stat. 32, 716–729 (1961)

    Google Scholar 

  58. Watterson, G. A.: Some theoretical aspects of diffusion theory in population genetics. Ann. Math. Stat. 33, 939–957 (1962), and erratum 34, 352 (1963)

    Google Scholar 

  59. Watterson, G. A.: On the number of segregating sites in genetical models without recombination. Theor. Pop. Biol. 7, 256–276 (1975)

    Google Scholar 

  60. Wright, S.: Evolution and the genetics of populations. Vol. 2. Chicago: The University of Chicago Press 1969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by National Science Foundation Grant DEB81-03530. This paper is dedicated to the memory of Charles C. Conley (1933–1984), who greatly influenced and generously helped and taught the author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagylaki, T. Biased intrachromosomal gene conversion in a chromosome lineage. J. Math. Biology 21, 215–235 (1985). https://doi.org/10.1007/BF00276223

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276223

Key words

Navigation