Skip to main content
Log in

Repetitive activity and hopf bifurcation under point-stimulation for a simple FitzHugh-Nagumo nerve conduction model

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

In response to point-stimulation with a constant current, a neuron may propagate a repetitive train of action potentials along its axon. For maintained repetitive activity, the current strength I must be, typically, neither too small nor too large. For I outside some range, time independent steady behavior is observed following a transient phase just after the current is applied. We present analytical results for a piecewise linear FitzHugh-Nagumo model for a point-stimulated (non-space-clamped) nerve which are consistent with this qualitative experimental picture. For each value of I there is a unique, spatially nonuniform, steady state solution. We show that this solution is stable except for an interval (I *, I *) of I values. Stability for I too small or too large corresponds to experiments with sub-threshold I or with excessive I which leads to ‘nerve block’. For I = I *, I * we find Hopf bifurcation of spatially nonuniform, time periodic solutions. We conclude that (I *, I *) lies interior to the range of I values for repetitive activity. The values of I * and I * and their dependence on the model parameters are determined. Qualitative differences between results for the point-stimulated configuration and the space-clamped case are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calvin, W. H., Schwindt, P. C.: Steps in production of motoneuron spikes during rhythmic firing. J. Neurophysiol. 35, 297–310 (1972)

    Google Scholar 

  2. Carpenter, G. A.: A geometric approach to singular perturbation problems with applications to nerve impulse equations, J. Diff. Eqns. 23, 335–367 (1977)

    Google Scholar 

  3. Casten, R., Cohen, H., Lagerstrom, P.: Perturbation analysis of an approximation to Hodgkin-Huxley theory. Quart. Appl. Math. 32, 365–402 (1975)

    Google Scholar 

  4. Cole, K. S., Antosiewicz, H. A., Rabinowitz, P.: Automatic computation of nerve excitation. J. SIAM 3, 153–172 (1955)

    Google Scholar 

  5. Cooley, J., Dodge, F., Cohen, H.: Digital computer solutions for excitable membrane models. J. Cell. Comp. Physiol. 66, Supp. 2, 99–109 (1965)

    Google Scholar 

  6. Cooley, J. W., Dodge, F. A.: Digital computer solutions for excitation and propagation of the nerve impulse. Biophys. J. 6, 583–599 (1966)

    Google Scholar 

  7. FitzHugh, R., Antosiewicz, H. A.: Automatic computation of nerve excitation-detailed corrections and additions. J. SIAM 7, 447–458 (1959)

    Google Scholar 

  8. FitzHugh, R.: Impulses and physiological states in models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Google Scholar 

  9. Guttman, R. Barnhill, R.: Oscillation and repetitive firing in squid axons. Comparison of experiments with computations. J. Gen. Physiol. 55, 104–118 (1970)

    Google Scholar 

  10. Hastings, S. P.: The existence of homoclinic and periodic orbits for the FitzHugh-Nagumo equations. Quart. J. Math., Oxford 27, 123–134 (1976)

    Google Scholar 

  11. Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117, 500–544 (1952)

    Google Scholar 

  12. Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. Bericht der Mathematisch-Physischen Klasse der Sächsischen Akademie der Wissenschaften zu Leipzig. 94, 3–22 (1942)

    Google Scholar 

  13. Jack, J. J. B., Noble, D., Tsien, R. W.: Electric Current Flow in Excitable Cells. London: Oxford University Press (1975)

    Google Scholar 

  14. McKean, H. P.: Nagumo's equation. Advances in Mathematics 4, 290–223 (1970)

    Google Scholar 

  15. Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. Applied Mathematical Sciences 19. Berlin-Heidelberg-New York: Springer (1976)

    Google Scholar 

  16. Messiah, A.: Quantum Mechanics, Vol. I. Amsterdam: North Holland, New York: Wiley (1961)

    Google Scholar 

  17. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE. 50, 2061–2070 (1962)

    Google Scholar 

  18. Rinzel, J., Keller, J. B.: Traveling wave solutions of a nerve conduction equation. Biophys. J. 13, 1313–1337 (1973)

    Google Scholar 

  19. Sabah, N. H., Spangler, R. A.: Repetitive response of the Hogdkin-Huxley model for the squid giant axon. J. Theoret, Biol. 29, 155–171 (1970)

    Google Scholar 

  20. Schiff, L. I.: Quantum Mechanics. New York: McGraw-Hill (1949)

    Google Scholar 

  21. Sleeman, B. D.: FitzHugh's nerve axon equations. J. Math. Biol. 2, 341–349 (1975)

    Google Scholar 

  22. Stein, R. B.: The frequency of nerve action potentials generated by applied currents. Proc. R. Soc. (London) B 167, 64–86 (1967)

    Google Scholar 

  23. Terzuolo, C. A., Washizu, Y.: Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of Crustacea. J. Neurophysiol. 25, 56–66 (1962)

    Google Scholar 

  24. Tomita, T., Wright, E. B.: A study of the crustacean axon repetitive response: I. The effect of membrane potential and resistance. J. Cell. Comp. Physiol. 65, 195–209 (1965)

    Google Scholar 

  25. Troy, W. C.: Oscillation phenomena in nerve conduction equations. Doctoral thesis, State University of New York at Buffalo (1974)

    Google Scholar 

  26. Troy, W. C.: The bifurcation of periodic solutions in the Hodgkin-Huxley equations. Quart. J. Math., Oxford (to appear)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinzel, J. Repetitive activity and hopf bifurcation under point-stimulation for a simple FitzHugh-Nagumo nerve conduction model. J. Math. Biology 5, 363–382 (1977). https://doi.org/10.1007/BF00276107

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276107

Key words

Navigation