Skip to main content
Log in

Competition for space in a heterogeneous environment

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider effects of competition for space in a heterogeneous environment, making use of nonlinear interaction-diffusion equations. Competition for space is assumed to mean mutual repulsive interactions that force other individuals to disperse from a crowded region. In other words, we are concerned with density-dependent dispersal forced by population pressures. Spatial heterogeneity is incorporated in the growth rates, and the environment is assumed to have a favorable habitat for two populations surrounded by largely hostile regions. Space-independent migration rates are assumed. We ignore the usual density-dependence in the growth rates to focus our attention on density-dependence in the migration rates. Our main conclusion is that two populations can coexist if the interspecific repulsive forces are weaker than the intraspecific ones. It is also emphasized that density-dependent dispersal in a heterogeneous environment is not always a stabilizing agent, and that either of two populations may become extinct by competition for space. Finally, the resemblance of our results to those from Lotka-Volterra competition equations is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D. G.: Some properties of the interface for a gas flow in porous media. In: Fasano, A., Primicerio, M. (eds.) Free boundary problems: theory and applications, vol. 1, pp. 150–159. Boston London: Pitman 1983

    Google Scholar 

  2. Aronson, D. G.: Bifurcation phenomena associated with nonlinear diffusion mechanisms. In: Fitzgibbon III., W. E. (ed.) Partial differential equations and dynamical systems (Research Notes in Mathematics, vol. 101, pp. 16–33) Boston London: Pitman 1984

    Google Scholar 

  3. Bertsch, M., Gurtin, M. E., Hilhorst, D., Peletier, L. A.: On interacting populations that disperse to avoid crowding; the effect of a sedentary colony. J. Math. Biol. 19, 1–12 (1984)

    Google Scholar 

  4. Bertsch, M., Gurtin, M. E., Hilhorst, D., Peletier, L. A.: On interacting populations that disperse to avoid crowding; preservation of segregation. J. Math. Biol. 23, 1–13 (1985)

    Google Scholar 

  5. Busenberg, S. N., Travis, C. C.: Epidemic models with spatial spread due to population migration. J. Math. Biol. 16, 181–198 (1983)

    Google Scholar 

  6. Gurney, W. S. C., Nisbet, R. M.: The regulation of inhomogeneous populations. J. theor. Biol. 52, 441–457 (1975).

    Google Scholar 

  7. Gurtin, M. E., MacCamy, R. C.: On the diffusion of biological populations. Math. Biosci. 33, 35–49 (1977)

    Google Scholar 

  8. Gurtin, M. E., Pipkin, A. C.: A note on interacting populations that disperse to avoid crowding. Q. Appl. Math. 42, 87–94 (1984)

    Google Scholar 

  9. Hosono, Y.: Traveling wave solutions for some density dependent diffusion equations. Jap. J. Appl. Math. 3, 163–196 (1986)

    Google Scholar 

  10. Hosono, Y.: Traveling waves for some biological systems with density dependent diffusion. Jap. J. Appl. Math. 4, 297–359 (1987)

    Google Scholar 

  11. Kawasaki, K., Teramoto, E.: Spatial pattern formation of prey-predator populations. J. theor. Biol. 8, 33–46 (1979)

    Google Scholar 

  12. Levin, S. A.: Dispersion and population interactions. Am. Nat. 108, 207–228 (1974)

    Google Scholar 

  13. Levin, S. A.: Models of population dispersal. In: Busenberg, S. N., Cooke, K. (eds.) Differential equations and applications in ecology, epidemics, and population problems, pp. 1–18. New York: Academic Press 1981

    Google Scholar 

  14. Mimura, M.: Stationary pattern of some density-dependent diffusion systems with competitive dynamics. Hiroshima Math. J. 11, 621–635 (1981)

    Google Scholar 

  15. Mimura, M., Kawasaki, K.: Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol. 9, 49–64 (1980)

    Google Scholar 

  16. Mimura, M., Nishiura, Y., Tesei, A., Tsujikawa, T.: Coexistence problem for two competing species models with density-dependent diffusion. Hiroshima Math. J. 14, 425–449 (1984)

    Google Scholar 

  17. Namba, T.: Density-dependent dispersal and spatial distribution of a population. J. theor. Biol. 86, 351–363 (1980)

    Google Scholar 

  18. Namba, T., Mimura, M.: Spatial distributions of competing populations. J. theor. Biol. 87, 795–814 (1980)

    Google Scholar 

  19. Nisbet, R. M., Gurney, W. S. C.: Modeling fluctuating populations. Chichester: Wiley 1982

    Google Scholar 

  20. Okubo, A.: Diffusion and ecological problems: mathematical models (Biomathematics, vol. 10), Berlin Heidelberg New York: Springer 1980

    Google Scholar 

  21. Pacala, S., Roughgarden, J.: Spatial heterogeneity and interspecific competition. Theor. Popul. Biol. 21, 92–113 (1982)

    Google Scholar 

  22. Peletier, L. A., Tesei, A.: Diffusion in inhomogeneous media: localization and positivity. Ann. Mat. Pura Appl. 141, 307–330 (1985)

    Google Scholar 

  23. Pozio, M. A., Tesei, A.: On some nonlinear diffusion models in population dynamics. In; Capasso, V., Grosso, E., Paveri-Fontana, S. L. (eds.) Mathematics in biology and medicine (Lect. Notes Biomath., vol. 57, pp. 82–86) Berlin Heidelberg New York: Springer 1985

    Google Scholar 

  24. Pozio, M. A., Tesei, A.: Degenerate parabolic problems in population dynamics. Jap. J. Appl. Math. 2, 351–380 (1985)

    Google Scholar 

  25. Pozio, M. A., Tesei, A.: Support properties of solutions for a class of degenerate parabolic problems. Commun. Partial Differ. Equations 12, 47–76 (1987)

    Google Scholar 

  26. Shigesada, N.: Spatial distribution of dispersing animals. J. Math. Biol. 9, 85–96 (1980)

    Google Scholar 

  27. Shigesada, N.: Spatial distribution of rapidly dispersing animals in heterogeneous environments. In: Levin, S. A., Hallam, T. G. (eds.) Mathematical ecology (Lect. Notes Biomath., vol. 54, pp. 478–491) Berlin Heidelberg New York: Springer 1984

    Google Scholar 

  28. Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. theor. Biol. 79, 83–99 (1979)

    Google Scholar 

  29. Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Popul. Biol. 30, 143–160 (1986)

    Google Scholar 

  30. Shigesada, N., Roughgarden, J.: The role of rapid dispersal in the population dynamics of competition. Theor. Pop. Biol. 21, 353–373 (1982)

    Google Scholar 

  31. Taylor, L. R., Taylor, R. A. J.: Insect migration as a paradigm for survival by movement. In: Swingland, I. R., Greenwood, P. J. (eds.) The ecology of animal movement, pp. 181–214. Oxford: Clarendon Press 1983

    Google Scholar 

  32. Teramoto, E., Seno, H.: Modeling of biological aggregation patterns. In: Ricciardi, L. M. (ed.) Biomathematics and related computational problems. London New York: Kluwer 1988

    Google Scholar 

  33. Yodzis, P.: Competition, mortality, and community structure. In: Diamond, J., Case, T. J. (eds.) Community ecology, pp. 480–491. New York: Harper & Row 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namba, T. Competition for space in a heterogeneous environment. J. Math. Biology 27, 1–16 (1989). https://doi.org/10.1007/BF00276077

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276077

Key words

Navigation