Bailey, N. T. J.: The Mathematical Theory of Infectious Diseases, Second Edition. New York: Hafner Press, 1975
Google Scholar
Birkhoff, G., Rota, G-C.: Ordinary Differential Equations, Second Edition. New York: John Wiley, 1969
Google Scholar
Cooke, K. L., Yorke, J. A.: Some equations modelling growth processes and gonorrhea epidemics. Math. Biosci. 16, 75–101 (1973)
Google Scholar
Hale, J. K.: Ordinary Differential Equations. New York: Wiley-Interscience, 1969
Google Scholar
Grossman, Z.: Oscillatory phenomena in a model of infectious diseases, preprint
Hethcote, H. W.: Asymptotic behavior and stability in epidemic models. In: Mathematical Problems in Biology, pp. 83–92. Lecture Notes in Biomathematics 2, New York: Springer, 1974
Hethcote, H. W.: Qualitative analyses of communicable disease models. Math. Biosci. 28, 335–356 (1976)
Google Scholar
Hethcote, H. W.: An immunization model for a heterogeneous population. Theor. Pop. Biol. 14, 338–349 (1978)
Google Scholar
Hethcote, H. W., Stech, H. W., van den Driessche, P.: Nonlinear oscillations in epidemic models, preprint.
Hethcote, H. W., Waltman, P.: Optimal vaccination schedules in a deterministic epidemic model. Math. Biosci. 18, 365–382 (1973)
Google Scholar
Hoppensteadt, F.: Mathematical Theories of Populations: Demographics, Genetics and Epidemics. Philadelphia: Society for Industrial and Applied Mathematics, 1975
Google Scholar
Hoppensteadt, F., Waltman, P.: A problem in the theory of epidemics II. Math. Biosci 12, 133–145 (1971)
Google Scholar
Kermack, W. O., McKendrick, A. G.: Contributions to the mathematical theory of epidemics, part I. Proc. Roy. Soc., Ser. A 115, 700–721 (1927)
Google Scholar
Lajmanovich, A., Yorke, J. A.: A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28, 221–236 (1976)
Google Scholar
Ludwig, D.: Final size distributions for epidemics. Math. Biosci. 23, 33–46 (1975)
Google Scholar
Miller, R. K.: On the linearization of Volterra integral equations. J. Math. Anal. Appl. 23, 198–208 (1968)
Google Scholar
Miller, R. K.: Nonlinear Volterra Integral Equations. Menlo Park: Benjamin, 1971
Google Scholar
Tudor, D. W.: Disease transmission and control in an age structured population, Ph.D. Thesis. University of Iowa, 1979
Waltman, P.: Deterministic Threshold Models in the Theory of Epidemics. Lecture Notes in Biomathematics 1, New York: Springer, 1974
Google Scholar
Wang, F. J. S.: Asymptotic behavior of some deterministic epidemic models. SIAM J. Math. Anal. 9, 529–534 (1978)
Google Scholar