Journal of Mathematical Biology

, Volume 2, Issue 1, pp 33–39

Genetic selection and de Finetti diagrams

  • Robert Ineichen
  • Eduard Batschelet
Article

Summary

Simple geometric constructions with triangular coordinates are presented for handling selection processes with a single pair of autosomal alleles. The selection performed on each generation is shown to be a projective mapping which can be split into two perspective collineations. The procedure is illustrated by examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Aitchison, J.: A geometrical version of Bayes' theorem. Amer. Stat. 25, 45 (1971).Google Scholar
  2. [2]
    Cannings, C., Edwards, A. W. F.: Natural selection and the de Finetti diagram. Ann. Hum. Genet. (London) 31, 421–428 (1968).Google Scholar
  3. [3]
    De Finetti, B.: Considerazioni matematiche sull' ereditarietà mendeliana. Metron 6, 29–37 (1926).Google Scholar
  4. [4]
    Hadeler, K. P.: Mathematik für Biologen. Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  5. [5]
    Jacquard, A.: The genetic structure of populations. Biomathematics, Vol. 5. Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  6. [6]
    Li, C. C.: Population genetics. Chicago and London: University of Chicago Press 1955 (2nd edition 1972).Google Scholar
  7. [7]
    Turner, J. R. G.: Changes in mean fitness under natural selection. In: Mathematical topics in population genetics (Ken-ichi Kojima, ed.). (Biomathematics, Vol. 1, 32–78.) Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  8. [8]
    Veblen, O., Young, J. W.: Projective geometry. Vol. 1. Boston: Ginn 1938.Google Scholar
  9. [9]
    Wright, S.: Evolution and the genetics of populations. Vol. 2: The theory of gene frequencies. Chicago-London: University of Chicago Press 1969.Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Robert Ineichen
    • 1
  • Eduard Batschelet
    • 2
  1. 1.HorwSwitzerland
  2. 2.Biomathematische AbteilungUniversität ZürichZürichSwitzerland

Personalised recommendations