Skip to main content
Log in

Biased random walk models for chemotaxis and related diffusion approximations

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

Stochastic models of biased random walk are discussed, which describe the behavior of chemosensitive cells like bacteria or leukocytes in the gradient of a chemotactic factor. In particular the turning frequency and turn angle distributions are derived from certain biological hypotheses on the background of related experimental observations. Under suitable assumptions it is shown that solutions of the underlying differential-integral equation approximately satisfy the well-known Patlak-Keller-Segel diffusion equation, whose coefficients can be expressed in terms of the microscopic parameters. By an appropriate energy functional a precise error estimation of the diffusion approximation is given within the framework of singular perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht-Buehler, G.: Phagokinetic tracks of 3T3 cells: Parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell 12, 333–339 (1977)

    Google Scholar 

  2. Albrecht-Buehler, G.: The angular distribution of directional changes of guided 3T3 cells. J. Cell Biol. 80, 53–60 (1979)

    Google Scholar 

  3. Allan, R. B., Wilkinson, P. C.: A visual analysis of chemotactic and chemokinetic locomotion of human neutrophil leukocytes. Exp. Cell Res. 111, 191–203 (1978)

    Google Scholar 

  4. Alt, W.: Orientation of cells migrating in a chemotactic gradient. In: Proc. Conf. on Models of Biological Growth and Spread, Heidelberg, 1979 (to appear)

  5. Alt, W.: Singular perturbation of differential integral equations describing biased random walks. Crelle J. Reine Angew. Math. (submitted)

  6. Berg, H. C., Brown, D. A.: Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. In: Antibiotics and Chemotherapy, Vol. 19, pp. 55–78. Basel: Karger, 1974

    Google Scholar 

  7. Berg, H. C., Tedesco, P. M.: Transient response to chemotactic stimuli in Escherichia coli. Proc. Nat. Acad. Sci. USA 72, 3235–3239 (1975)

    Google Scholar 

  8. Brown, D. A., Berg H. C.: Temporal stimulation of chemotaxis in Escherichia coli. Proc. Nat. Acad. Sci. USA 71, 1388–1392 (1974)

    Google Scholar 

  9. Boyarsky, A., Noble, P. B.: A Markov chain characterization of human neutrophil locomotion under neutral and chemotactic conditions. Can. J. Physiol. Pharmacology 55, 1–6 (1977)

    Google Scholar 

  10. Dipasquale, A.: Locomotory activity of epithelial cells in culture. Exp. Cell Res. 94, 191–215 (1975)

    Google Scholar 

  11. Gallin, J. I., Gallin, E. K., Malech, H. L., Cramer, E. B.: Structural and ionic events during leukocyte chemotaxis. In: Leukocyte chemotaxis (J. I. Gallin, P. G. Quie, eds.) pp. 123–141. New York: Raven Press, 1978

    Google Scholar 

  12. Gerisch, G., Hess, B., Malchow, D.: Cell communication and cyclic-AMP regulation during aggregation of the slime mold dictyostelium discoideum. In: Biochemistry of sensory functions (L. Jaenicke, ed.) pp. 279–298. Berlin, Heidelberg, New York: Springer Verlag, 1974

    Google Scholar 

  13. Hall, R. L.: Amoeboid movement as a correlated walk. J. math. Biol. 4, 327–335 (1977)

    Google Scholar 

  14. Hall, R. L., Peterson, S. C.: Trajectories of human granulocytes. Biophys. J. 25, 365–372 (1979)

    Google Scholar 

  15. Jungi, T. W.: Different concentrations of chemotactic factors can produce attraction or migration inhibition of leukocytes. Int. Archs. Allergy appl. Immun. 53, 29–36 (1977)

    Google Scholar 

  16. Keller, E. F.: Mathematical aspects of bacterial chemotaxis. In: Antibiotics and Chemotherapy, Vol. 19, pp. 79–93. Basel: Karger, 1974

    Google Scholar 

  17. Keller, E. F., Segel, L. A.: Model for chemotaxis. J. theor. Biol. 30, 225–234 (1971).

    Google Scholar 

  18. Koshland, D. E., jr.: A response regulator model in a simple sensory system. Science 196, 1055–1063 (1977)

    Google Scholar 

  19. Kurtz, Th. G.: A limit theorem for perturbed operator semigroups with applications to random evolutions. J. Funct. Anal. 12, 55–67 (1973)

    Google Scholar 

  20. Lauffenburger, D., Keller, K. H.: Effects of leukocyte random motility and chemotaxis in tissue inflammatory response. J. theor. Biol. 81, 475–503 (1979)

    Google Scholar 

  21. Lovely, P. S., Dahlquist, F. W.: Statistical measures of bacterial motility and chemotaxis. J. theor. Biol. 50, 477–496 (1975)

    Google Scholar 

  22. MacNab, R., Koshland, D. E., jr.: The gradient-sensing mechanism in bacterial chemotaxis. Proc. Nat. Acad. Sci. USA 69, 2509–2512 (1972)

    Google Scholar 

  23. MacNab, R., Koshland, D. E., jr.: Persistence as a concept in the motility of chemotactic bacteria. J. Mechanochem. Cell Motility 2, 141–148 (1973)

    Google Scholar 

  24. Maderazo, E. G., Woronick, Ch. L.: A modified micropore filter assay of human granulocyte leukotaxis. In: Leukocyte chemotaxis (J. I. Gallin, P. G. Quie, eds.) pp. 43–55. New York: Raven Press, 1978

    Google Scholar 

  25. Nishida, T.: Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation. Commun. math. Phys. 61, 119–148 (1978)

    Google Scholar 

  26. Nossal, R.: Directed cell locomotion arising from strongly biased turn angles. Math. Biosc. 31, 121–129 (1976)

    Google Scholar 

  27. Nossal, R.: Mathematical theories of topotaxis. In: Proc. Conf. on Models of Biological Growth and Spread. Heidelberg, 1979 (to appear)

  28. Nossal, R., Weiss, G. H.: Analysis of a densiometric assay for bacterial chemotaxis. J. theor. Biol. 41, 143–147 (1973)

    Google Scholar 

  29. Nossal, R., Weiss, G. H.: A descriptive theory of cell migration on surfaces. J. theor. Biol. 47, 103–113 (1974)

    Google Scholar 

  30. Nossal, R., Zigmond, S. H.: Chemotropism indices for polymorphonuclear leukocytes. Biophys. J. 16, 1171–1182 (1976)

    Google Scholar 

  31. Ordal, G. W., Fields, R. B.: A biochemical mechanism for bacterial chemotaxis. J. theor. Biol. 68, 491–500 (1977)

    Google Scholar 

  32. Papanicolaou, G. C.: Some probabilistic problems and methods in singular perturbations. Rocky Mount. J. Math. 6, 653–674 (1976)

    Google Scholar 

  33. Papanicolaou, G. C.: Introduction to the asymptotic analysis of stochastic equations. In: Modern modeling of continuum phenomena. AMS Lectures in Appl. Math., Vol. 16 (R. C. DiPrima, ed.) pp. 109–147. Providence, 1977

  34. Patlak, C. S.: Random walk with persistence and external bias. Bull. math. Biophys. 15, 311–338 (1953)

    Google Scholar 

  35. Peterson, S. C., Noble, P. B.: A two-dimensional random-walk analysis of human granulocyte movement. Biophys. J. 12, 1048–1055 (1972)

    Google Scholar 

  36. Ramsey, W. S.: Analysis of individual leukocyte behaviour during chemotaxis. Exp. Cell Res. 70, 129–139 (1972)

    Google Scholar 

  37. Segel, L. A.: A theoretical study of receptor mechanisms in bacterial chemotaxis. SIAM J. Appl. Math. 32, 653–665 (1977)

    Google Scholar 

  38. Segel, L. A.: Mathematical models for cellular behavior. In: A study in mathematical biology. MAA Studies in Math. Vol. 15 (S. Levin, ed.) pp. 156–190. Washington, 1978

  39. Stossel, Th. P.: The mechanism of leukocyte locomotion. In: Leukocyte chemotaxis (J. I. Gallin, P. G. Quie, eds.) pp. 143–160. New York: Raven Press, 1978

    Google Scholar 

  40. Stroock, D. W.: Some stochastic processes which arise from a model of the motion of a bacterium. Zeitschr. Wahrsch.th. 28, 305–315 (1974)

    Google Scholar 

  41. Zigmond, S. H.: Mechanisms of sensing chemical gradients by polymorphonuclear leukocytes. Nature 249, 450–452 (1974)

    Google Scholar 

  42. Zigmond, S. H.: Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75, 606–616 (1977)

    Google Scholar 

  43. Zigmond, S. H.: Chemotaxis by polymorphonuclear leukocytes. J. Cell Biol. 77, 269–287 (1978)

    Google Scholar 

  44. Zigmond, S. H., Hirsch, J. G.: Leukocyte locomotion and chemotaxis. J. Exp. Medicine 137, 387–410 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alt, W. Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biology 9, 147–177 (1980). https://doi.org/10.1007/BF00275919

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275919

Key words

Navigation