Skip to main content
Log in

Transient behavior of a chemotaxis system modelling certain types of tissue inflammation

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A spatially-distributed mathematical model for the inflammatory response to bacterial invasion of tissue is proposed which includes leukocyte motility and chemotaxis behavior and chemical mediator properties explicitly. This system involves three coupled nonlinear partial differential equations and so is not amenable to analysis. Using scaling arguments and singular perturbation techniques, an approximating system of two coupled nonlinear ordinary differential equations is developed. This system now permits analysis by phase plane methods. Using the approximating model, the dependence of the dynamic behavior of the inflammatory response upon key process parameters, including leukocyte chemotaxis, is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, J. C. (ed.): Infection and the compromised host. Baltimore: Williams and Wilkins 1976

    Google Scholar 

  2. Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147 (1980)

    Google Scholar 

  3. Amann, H.: Gewöhnliche Differentialgleichungen. Berlin: Walter de Gruyter 1983

    Google Scholar 

  4. Baehni, P. C., Tsai, C. C., Norman, M., Stoller, N., McArthur, W. P., Taichman, N. S.: Studies of host responses during experimental gingivitis in humans. I.: Polymorphonuclear leukocyte responses to autologous plague collected during the development of gingival inflammation. J. Period. Res. 14, 279 (1979)

    Google Scholar 

  5. Buffone, V., Meakins, J. L., Christou, N. V. Neutrophil function in surgical patients: Relationship to adequate bacterial defenses. Arch. Surg. 119, 39 (1984)

    Google Scholar 

  6. Cianciola, L. J., Genco, R. J., Patters, M., McKenna, J., van Oss, C. J. Defective polymorphonu-clear leukocyte function in a human periodontal disease. Nature 265, 445 (1977)

    Google Scholar 

  7. Day, S. E. J., Vasli, K. K., Russell, R. J., Arbuthnot, J. P.: A simple method for the study in vivo of bacterial growth and accompanying host response. J. Inf. 2, 39 (1980)

    Google Scholar 

  8. Friedman, A.: Partial differential equations of parabolic type. London: Prentice-Hall 1965; reprinted 1983 by R. Krieger Publ. Comp., Halabar (Florida)

    Google Scholar 

  9. Friedman, A.: Partial differential equations. New York: Holt, Rinehart and Winston 1969

    Google Scholar 

  10. Golub, L. M., Tacons, V. J., Nicoll, G., Ramanmurthy, N., Kaslick, R. S.: The response of human sulcular leukocytes to chemotactic challenge. J. Period. Res. 16, 171 (1981)

    Google Scholar 

  11. Griece, M. H. (ed.): Infections in the abnormal host. Yorke Medical Books 1980

  12. Hau, T., Hoffman, R., Simmons, R. L.: Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. I. In vivo inhibition of peritoneal leukocytosis. Surg. 83, 223 (1978)

    Google Scholar 

  13. Hau, T., Nelson, R. D., Fliegel, V. D., Levenson, R., Simmons, R. L.: Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. II. Influence of hemoglobin on leukocyte chemotaxis in vitro. J. Surg. Res. 22, 174 (1977)

    Google Scholar 

  14. Hau, T., Simmons, R. L.: Chemotactic substances in the treatment of experimental intrapetitoneal infection. Am. Surg. 192, 625 (1980)

    Google Scholar 

  15. Hau, T., Simmons, R. L.: Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. III. The influence of hemoglobin on phagocytosis and intracellular killing by human granulocytes. Surg. 87, 588 (1980)

    Google Scholar 

  16. Hethcote, H. W.: Qualitative analysis for communicable disease models. Math. Biosci. 28, 335 (1976)

    Google Scholar 

  17. Hoppensteadt, F.: Properties of solutions of ordinary differential equations with small parameters. Commun. Pure Appl. Math. 24, 807 (1971)

    Google Scholar 

  18. Issekutz, A. C., Movat, H. Z.: Quantitation of neutrophil infiltration in vitro. Immunol. Lett. 1, 27 (1979)

    Google Scholar 

  19. Jennings, M. M., Jennings, S. A., Robson, M. S., Heggers, J. R.: Mechanisms of host defense and quantitative comparison of bacterial populations in experimental peritonitis. Can. J. Microbiol. 26, 175 (1980)

    Google Scholar 

  20. Keller, E. F., Segel, L. A.: Models for chemotaxis. J. Theor. Biol. 30, 225 (1971)

    Google Scholar 

  21. Lauffenburger, D., Alt, W.: Singular perturbation analysis of a spatially distributed model for the inflammatory response. In: Jain, R., Stroeve, P., Himmelstein, K. (eds.) Proc. AICHE Symp. on Transport Phenomena in Biomedical Systems, Los Angeles, Nov. 1982 (1983)

  22. Lauffenburger, D., Aris, R.: Measure of leukocyte motility and chemotaxis parameters using a quantitative analysis of the under-agarose migration assay. Math. Biosci. 44, 121 (1979)

    Google Scholar 

  23. Lauffenburger, D., Keller, K. H.: Effects of leukocyte random motility and chemotaxis in tissue inflammatory response. J. Theor. Biol. 81, 475 (1979)

    Google Scholar 

  24. Lauffenburger, D., Kennedy, C. R.: Analysis of a lumped model for tissue inflammation dynamics. Math. Biosci. 53, 189 (1981)

    Google Scholar 

  25. Lauffenburger, D., Kennedy, C. R.: Localized bacterial infection in a distributed model for tissue inflammation. J. Math. Biol. 16, 141 (1983)

    Google Scholar 

  26. Gallin, J. I., Quie, P. G. (eds.): Leukocyte chemotaxis: methods, physiology, and clinical implications. New York: Raven Press 1978

    Google Scholar 

  27. Morris, J. S., Meakins, J. L., Christou, N. V.: In vivo neutrophil delivery to inflammatory sites in surgical patients: Correlation with in vitro neutrophil chemotaxis and adherence. Arch. Surg. 120, 205 (1985)

    Google Scholar 

  28. Rosen, G.: Chemotactic transport theory for neutrophil leukocytes. J. Theor. Biol. 59, 371 (1976)

    Google Scholar 

  29. Segel, L. A., Chet, I., Henis, Y.: A simple quantitative assay for bacterial motility. J. Gen. Microbiol. 98, 329 (1977)

    Google Scholar 

  30. Solberg, C. O.: Enhanced susceptibility to infection: A new method for the evaluation of neutrophil granulocyte function. Acta Path. Microbiol. Scand. B. 80, 10 (1972)

    Google Scholar 

  31. Toews, G. B., Gross, G., Pierce, A.: The relationship of inoculum size to lung bacterial clearance and phagocytic cell response in mice. Am. Rev. Respir. Dis. 120, 559 (1979)

    Google Scholar 

  32. von Graenvenitz, A.: The role of opportunistic bacteria in human disease. Am. Rev. Microbiol. 37, 447 (1977)

    Google Scholar 

  33. Wilkinson, P. C.: Chemotaxis and inflammation. Edinburgh Harlow New York: Churchill-Livingston 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alt, W., Lauffenburger, D.A. Transient behavior of a chemotaxis system modelling certain types of tissue inflammation. J. Math. Biology 24, 691–722 (1987). https://doi.org/10.1007/BF00275511

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275511

Key words

Navigation