Journal of Mathematical Biology

, Volume 21, Issue 1, pp 77–95 | Cite as

On the eigenvalue distribution of genetic and phenotypic dispersion matrices: Evidence for a nonrandom organization of quantitative character variation

  • G. P. Wagner


A quantitative genetic model of “random pleiotropy” is introduced as reference model for detecting the kind and degree of organization in quantitative genetic variation. In this model the genetic dispersion matrix takes the form of G = BBT, where B is a general, real, Gaussian random matrix. The eigenvalue density of the corresponding ensemble of random matrices (ℰG) is considered. The first two moments are derived for variance-covariance matrices G as well as for correlation matrices R, and an approximate expression of the density function is given. The eigenvalue distribution of all empirical correlation matrices deviates from that of a random pleiotropy model by a very large leading eigenvalue associated with a “size factor”. However the frequency-distribution of the remaining eigenvalues shows only minor deviations in mammalian skeletal data. A prevalence of intermediate eigenvalues in insect data may be caused by the inclusion of many functionally unrelated characters. Hence two kinds of deviations from random organization have been found: a “mammal like” and an “insect like” organization. It is concluded that functionally related characters are on the average more tightly correlated than by chance (= “mammal like” organization), while functionally unrelated characters appear to be less correlated than by random pleiotropy (“insect like” organization).

Key words

Evolution quantitative inheritance random matrix theory morphological integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atchley, W. R., Rutledge, J. J., Cowley, D. E.: Genetic components of size and shape. II. Multivariate covariance patterns in the rat and mouse skull. Evolution 35, 1037–1055 (1981)Google Scholar
  2. Bailey, D. W.: A comparison of genetic and environmental principal components of morphogenesis in mice. Growth 20, 63–74 (1956)Google Scholar
  3. Berg, R. L.: The ecological significance of correlation pleiades. Evolution 14, 171–180 (1960)Google Scholar
  4. Bulmer, M. G.: The mathematical theory of quantitative genetics. Oxford: Clarendon Press 1980Google Scholar
  5. Bürger, R.: Constraints for the evolution of functionally coupled characters: A nonlinear analysis of a phenotypic model. Evolution (in press) (1984)Google Scholar
  6. Cheverud, J. M.: Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36, 499–516 (1982)Google Scholar
  7. Cheverud, J. M., Rutledge, J. J., Atchley, W. R.: Quantitative genetics of development: Genetic correlations among agespecific trait values and the evolution of ontogeny. Evolution 37, 895–905 (1983)Google Scholar
  8. Dammasch, I. E., Wagner G. P.: On the properties of randomly connected McCulloch-Pitts networks: Differences between input-constant and input-variant networks. Cybernetics and Systems 15, 91–117 (1984).Google Scholar
  9. Gimelfarb, A.: Quantitative character dynamics: Gametic model. Theoret. Population Biology 22, 324–366 (1982)Google Scholar
  10. Gould, S. J., Lewontin, R. C.: The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptionist programe. Proc. R. Soc. London B204, 581–598 (1979)Google Scholar
  11. Graf, U., Henning, H.-J., Stange, K.: Formeln und Tabellen der mathematischen Statistik. 2nd edition. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  12. Griffith, J. S.: Mathematical neurobiology. London and New York: Academic Press 1971Google Scholar
  13. Hegmann, J. P., DeFries, J. C.: Are genetic correlations and environmental correlations correlated? Nature 226, 184–286 (1970)Google Scholar
  14. Johnson, C.: Introduction to Natural Selection. Baltimore: Univ. Park Press 1976Google Scholar
  15. Kendall, M. G., Stuart, A.: The advanced theory of statistics, vol. I–III. London: Charles Griffin & Co. 1958–1966Google Scholar
  16. Kimura, M.: A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc. Natl. Acad. Sci. USA 54, 731–736 (1965)Google Scholar
  17. Lande, R.: Quantitative genetic analysis of multivariate evolution, applied to brain: bodysize allometry. Evolution 33, 402–416 (1979)Google Scholar
  18. Lande, R.: The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94, 203–215 (1980)Google Scholar
  19. Leamy, L.: Genetic and environmental correlations of morphometric traits in randombred house mice. Evolution 31, 357–369 (1977).Google Scholar
  20. Leamy, L., Atchley, W.: Static and evolutionary allometry of osteometric traits in selected lines of rats. Evolution 38, 47–54 (1984)Google Scholar
  21. Mayr, E.: How to carry out the adaptionist program? Amer. Nat. 121, 324–334 (1983)Google Scholar
  22. Mehta, M. L.: Random Matrices and the statistical theory of energy levels. New York and London: Academic Press 1967Google Scholar
  23. Olson, E. C., Miller, R. L.: Morphological Integration. Chicago: Univ. of Chicago Press 1958Google Scholar
  24. Riedl, R.: A systems-analytical approach to macro-evolutionary phenomena. Q. Rev. Biol. 52, 351–370 (1977)Google Scholar
  25. Rohlf, F. J., Sokal, R. R.: Comparative morphometrics by factor analysis in two species of Diptera. Z. Morphol. Tiere 72, 36–45 (1972)Google Scholar
  26. Ruttner, F., Tassencourt, L., Louveax, J.: Biometrical statistical analysis of the geographical variability of Apis mellifera L. Apidologie 9, 363–381 (1978)Google Scholar
  27. Sneath, P. H. A., Sokal, R. R.: Numerical Taxonomy. San Francisco: Freeman & Co. 1973Google Scholar
  28. Sokal, R. R.: Variation and covariation of characters of Alate Pemphigus populi-transversus in eastern North America. Evolution 16, 227–245 (1962)Google Scholar
  29. Srivastava, M. S., Khatri, C. G.: An introduction to multi-variate statistics. New York: North Holland 1979Google Scholar
  30. Waddington, C.: The strategy of the genes. London: Allen and Unwin 1956Google Scholar
  31. Wagner, G. P.: Coevolution of functionally constrained characters: Prerequisites for adaptive versatil-ity. Bio Systems 17, 51–55 (1984a)Google Scholar
  32. Wagner, G. P.: Adaptively optimal genetic variation of quantitative characters: Theorems of existence and of the significance of morphological integration. Theoret. Population Biology (in press) (1984b)Google Scholar
  33. Wright, S.: Evolution and the Genetics of Populations. Vol. I. Chicago-London: Univ. of Chicago Press 1968Google Scholar
  34. Wuketits, F. M.: Grundriss der Evolutionstheorie. Darmstadt: Wiss. Buchges. 1982Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • G. P. Wagner
    • 1
  1. 1.Max-Planck-Institut für EntwicklungsbiologieTübingenGermany

Personalised recommendations