Skip to main content
Log in

Nonlinear equivalent circuits for membranes

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The problem of obtaining Helmholtz equivalents for nonlinear resistive one-ports is considered. Two fundamentally different classes of equivalent are described, one local and the other global. For each, necessary and sufficient conditions are derived for the existence and uniqueness of either the Thévenin equivalent or the Norton equivalent or both. These concepts are illustrated (i) by proving that a cell whose channels and pumps are monotone in the membrane potential will, in the absence of net state changes in these ionophores, possess a unique stable resting potential and (ii) by demonstrating that it is in principle impossible to assign unique equivalent circuits to such ionophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beilby, M. J., Coster, H. G. L.: The double-fixed-charge membrane: Electromechanical stress and the effects of temperature on punchthrough. Austral. J. Plant. Physiol. 7, 595–608 (1980)

    Google Scholar 

  2. Busath, D., Szabo, G.: Gramicidin forms multi-state rectifying channels. Nature (London) 294, 371–373 (1981)

    Google Scholar 

  3. Chua, L. O.: Introduction to nonlinear network theory. New York: McGraw-Hill 1969

    Google Scholar 

  4. Clay, R.: Nonlinear networks and systems. New York: Wiley-Interscience 1971

    Google Scholar 

  5. Desoer, C. A., Katzenelson, J.: Nonlinear RLC networks. Bell System Tech. J. 44, 161–168 (1965)

    Google Scholar 

  6. Dolezal, V.: Nonlinear networks. Amsterdam: Elsevier 1977

    Google Scholar 

  7. Everitt, W. L.: Communication engineering, 2nd ed. New York: McGraw-Hill 1937

    Google Scholar 

  8. Gradmann, D., Hansen, U.-P., Long, W. S., Slayman, C.L., Warncke, J.: Current-voltage relationships for the plasma membrane and its principal electrogenic pump in Neurospora crassa: I. Steady-state conditions. J. Membr. Biol. 36, 83–95 (1977)

    Google Scholar 

  9. Hamill, O. P., Sakmann, B.: Multiple conductance states of single acetylcholine receptor channels in embroyonic muscle cells. Nature (London) 294, 462–464 (1981)

    Google Scholar 

  10. Hodgkin, A. L., Horowicz, P.: The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol. (London) 148, 127–160 (1959)

    Google Scholar 

  11. Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544 (1952)

    Google Scholar 

  12. Howe, G. W. O.: The make and break theorem of Helmholtz. Wireless Eng. 20, 319–322 (1943)

    Google Scholar 

  13. Hughes, W. L.: Nonlinear electrical networks. New York: Ronald Press 1960

    Google Scholar 

  14. Keifer, D. W., Spanswick, R. M.: Activity of the electrogenic pump in Chara corallina as inferred from measurements of the membrane potential, conductance, and potassium permeability. Plant Physiol. 62, 653–661 (1978)

    Google Scholar 

  15. Latorre, R., Alvarez, O., Ehrenstein, G., Espinoza, M., Reyes, J.: The nature of the voltagedependent conductance of the hemocyanin channel. J. Membr. Biol. 25, 163–182 (1975)

    Google Scholar 

  16. LePage, W. R., Seely, S.: General network analysis. New York: McGraw-Hill 1952

    Google Scholar 

  17. Moad, M. F.: On Thévenin's and Norton's equivalent circuits. IEEE Trans. Education E-25, 99–102 (1982)

    Google Scholar 

  18. Penfield, P., Jr., Spence, R., Duinker, S.: Tellegen's theorem and electrical networks. Cambridge: M.I.T. Press 1970

    Google Scholar 

  19. Pickard, W. F., Galanis, J. C.: What can be inferred about the ion-transporting properties of a membrane from measurements of resting potential, tangential resistance, and tracer flux? Math. Biosci. 55, 137–154 (1981)

    Google Scholar 

  20. Stern, T. E.: Theory of nonlinear networks and systems. Reading: Addison-Wesley 1965

    Google Scholar 

  21. Tuttle, D. F., Jr.: Network synthesis, Vol. I. New York: Wiley 1958

    Google Scholar 

  22. Willson, A. N., Jr. (ed.): Nonlinear networks: Theory and analysis. New York: IEEE Press 1974

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickard, W.F. Nonlinear equivalent circuits for membranes. J. Math. Biology 21, 11–23 (1984). https://doi.org/10.1007/BF00275219

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275219

Key words

Navigation