Skip to main content
Log in

Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A reaction-diffusion system which describes the spatial spread of bacterial diseases is studied. It consists of two nonlinear parabolic equations which concern the evolution of the bacteria population and of the human infective population in an urban community, respectively. Different boundary conditions of the third type are considered, for the two variables. This model is suitable to study oro-faecal transmitted diseases in the European Mediterranean regions. A threshold parameter is introduced such that for suitable values of it the epidemic eventually tends to extinction, otherwise a globally asymptotically stable spatially inhomogeneous stationary endemic state appears. The case in which the bacteria diffuse but the human population does not, has also been considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Capasso, V., Maddalena, L.: A nonlinear diffusion system modelling the spread of oro-faecal diseases. In: Nonlinear phenomena in mathematical sciences. (V. Lakshmikantham, ed.) New York: Academic Press, 1981

    Google Scholar 

  2. Capasso, V., Maddalena, L.: Asymptotic behaviour for a system of nonlinear diffusion equations modelling the spread of oro-faecal diseases. Rend. dell'Acc. Sc. Fis. Mat. in Napoli (in press) 1981

  3. Capasso, V., Paveri-Fontana, S. L.: A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev. Epidem. et Santé Publ. 27, 121–132 (1979). Errata, Ibidem 28, 390 (1980)

    Google Scholar 

  4. Checcacci, L.: Igiene e medicina preventiva. Milano: C. E. Ambrosiana 1972

    Google Scholar 

  5. Coppel, W. A.: Stability and asymptotic behaviour of differential equations. Boston: Heath 1965

    Google Scholar 

  6. Diekmann, O., Temme, N. M.: Nonlinear diffusion problems. Amsterdam: Mathematisch Centrum 1976

    Google Scholar 

  7. Friedman, A.: Partial differential equations. New York: Holt, Rinehart and Winston, Inc. 1969

    Google Scholar 

  8. Martin, R. H.: Asymptotic stability and critical points for nonlinear quasimonotone parabolic systems. J. Diff. Eq. 30, 391–423 (1978)

    Google Scholar 

  9. McNabb, A.: Comparison and existence theorems for multicomponent diffusion systems. J. Math. Anal. Appl. 8, 133–144 (1961)

    Google Scholar 

  10. Protter, M. H., Weinberger, H. F.: Maximum principles in differential equations. Englewood Cliffs, N.J.: Prentice-Hall 1967

    Google Scholar 

  11. Protter, M. H., Weinberger, H. F.: On the spectrum of general second order operators. Bull. Am. Math. Soc. 72, 251 -255 (1966)

    Google Scholar 

  12. Puel, J. P.: Existence, comportment a l'infini et stabilité dans certains problèms quasilinéaires elliptiques et paraboliques d'ordre 2. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV 3, 89–119 (1976)

    Google Scholar 

  13. Rauch, J., Smoller, J. A.: Qualitative theory of the Fitzhug-Nagumo equations. Adv. Math. 27, 12–44 (1978)

    Google Scholar 

  14. Sattinger, D. H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Ind. Univ. Math. J. 21, 979–1000 (1972)

    Google Scholar 

  15. Szarski, J.: Differential inequalities. Warszawa: P. W. N. 1965

    Google Scholar 

  16. Walter, W.: Differential and integral inequalities. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work performed under the auspices of the G.N.A.F.A. [L. M.] and the G.N.F.M. [V. C.] C.N.R. in the context of the Program of Preventive Medicine (Project MPP1), C.N.R., Italy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capasso, V., Maddalena, L. Convergence to equilibrium states for a reaction-diffusion system modelling the spatial spread of a class of bacterial and viral diseases. J. Math. Biology 13, 173–184 (1981). https://doi.org/10.1007/BF00275212

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275212

Key words

Navigation