Skip to main content
Log in

A simple model for phase locking of biological oscillators

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Summary

A mathematical model is presented for phase locking of a biological oscillator to a sinusoidal stimulus. Analytical, numerical and topological considerations are used to discuss the patterns of phase locking as a function of the amplitude of the sinusoidal stimulus and the relative frequencies of the oscillator and the sinusoidal stimulus. The sorts of experimental data which are needed to make comparisons between theory and experiment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V. I.: Small denominators. 1. Mappings of the circumference onto itself. Trans. of The A.M.S. Series 2. 46, 213–284 (1965)

    Google Scholar 

  • Arnold, V. I.: Ordinary Differential Equations. Cambridge, Mass.: MIT Press, 1973

    Google Scholar 

  • Cartwright, M. L., Littlewood, J. E.: On nonlinear differential equations of the second order. Ann. Math. 54, 1–37 (1951)

    Google Scholar 

  • Clark, F. J., von Euler, C.: On the regulation of depth and rate of breathing. J. Physiol. London 222, 267–295 (1972)

    Google Scholar 

  • Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations, Chapter 17. New York: McGraw Hill, 1955

    Google Scholar 

  • Denjoy, A.: Sur les courbes definies par les equations differentielle a la surface du tore. J. Math. Pures et Appl. 11, 333–375 (1932)

    Google Scholar 

  • Flaherty, J. E., Hoppensteadt, F. C.: Frequency entrainment of a forced van der Pol oscillator. Studies in Appl. Math. 58, 5–15 (1978)

    Google Scholar 

  • Fohlmeister, J. F., Poppele, R. E., Purple, R. L.: Repetitive firing: dynamic behaviour of sensory neurons reconciled with a quantitative model. J. Neurophysiol. 37, 1213–1227 (1974)

    Google Scholar 

  • Grasman, J., Veling, E. J. M., Willems, G. M.: Relaxation oscillations governed by a van der Pol equation with periodic forcing term. SIAM J. Appl. Math. 31, 667–676 (1976)

    Google Scholar 

  • Guckenheimer, J., Oster, G., Ipaktchi, A.: The dynamics of density dependent population models. J. Math. Biol. 4, 101–147 (1977)

    Google Scholar 

  • Hartline, D. K.: Simulation of phase-dependent pattern changes to perturbations of regular firing in crayfish stretch receptor. Brain Res. 110, 245–257 (1976)

    Google Scholar 

  • Hayashi, C.: Nonlinear Oscillations in Physical Systems. New York: McGraw Hill, 1964

    Google Scholar 

  • Herman, M. R.: Mesure de Lebesque et nombre de rotation. In Lecture Notes Mathematics, #597, Geometry and Topology, pp. 271–293, Berlin: Springer-Verlag, 1977

    Google Scholar 

  • Kauffman, S.: Measuring a mitotic oscillator: the arc discontinuity. Bull. Math. Biol. 36, 171–182 (1974)

    Google Scholar 

  • Keener, J. P.: Chaotic behavior in piecewise continuous difference equations. Trans. Am. Math. Soc. 1979

  • Knight, B. W.: Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59, 734–766 (1972a)

    Google Scholar 

  • Knight, B. W.: The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. Experimental evidence for resonant enhancement in the population response. J. Gen. Physiol. 59, 767–778 (1972b)

    Google Scholar 

  • Li, T.-Y., Yorke, J. A.: Period three implies chaos. Am. Math. Monthly 82, 985–992 (1975)

    Google Scholar 

  • Peixoto, M. M.: Structural stability on two dimensional manifolds. Topology 1, 101–121 (1962)

    Google Scholar 

  • Reid, J. V. O.: The cardiac pacemaker: effects of regularly spaced nervous input. Am. Heart J. 78, 58–64 (1969)

    Google Scholar 

  • Rescigno, A., Stein, R. B., Purple, R. L., Poppele, R. E.: A neuronal model for the discharge patterns produced by cyclic inputs. Bull. Math. Biophys. 32, 337–353 (1970)

    Google Scholar 

  • Rosenberg, H.: Les diffeomorphismes du cercle. Seminaire Bourbaki, 28 e annee, 1975–76, pp. 81–98, Berlin: Springer-Verlag, 1977.

    Google Scholar 

  • Sachsenmaier, W., Remy, V., Plattner-Schobel, R.: Initiation of synchronous mitosis in Physarum polycephalum. Exp. Cell Res. 73, 41–48 (1972)

    Google Scholar 

  • Stein, P. S. G.: Application of the mathematics of coupled oscillator systems to the analysis of the neural control of locomotion. Fed. Proc. 36, 2056–2059 (1977)

    Google Scholar 

  • Stein, R. B., French, A. S., Holden, A. V.: The frequency response, coherence, and information capacity of two neuronal models. Biophys. J. 12, 295–322 (1972)

    Google Scholar 

  • Tyson, J., Sachsenmaier, W.: Is nuclear division in Physarum controlled by a continuous limit cycle oscillator? J. Theor. Biol. 73 723–738 (1978)

    Google Scholar 

  • Van der Tweel, L. H., Meijler, F. L., Van Capelle, F. J. L.: Synchronization of the heart. J. Appl. Physiol. 34, 283–287 (1973)

    Google Scholar 

  • Wendler, G.: The influence of propioceptive feedback on locust flight coordination. J. Comp. Physiol. 88, 173–200 (1974)

    Google Scholar 

  • Winfree, A. T.: Phase control of neural pacemakers. Science 197, 761–763 (1977)

    Google Scholar 

  • Wyman, R. J.: Neural generation of the breathing rhythm. Ann. Rev. Physiol. 39, 417–448 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, L., Mackey, M.C. A simple model for phase locking of biological oscillators. J. Math. Biol. 7, 339–352 (1979). https://doi.org/10.1007/BF00275153

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275153

Keywords

Navigation