Skip to main content
Log in

Systems analysis of biological receptors

II. The transfer characteristics of the frog muscle spindle

  • Published:
Kybernetik Aims and scope Submit manuscript

Zusammenfassung

Zur Erfassung der Übertragungseigenschaften der Froschmuskelspindel wurden die wichtigsten Systemparameter — Länge und Kraft der intrafusalen Muskelfasern, das Verhalten des Receptorpotentials, und die Impulsdichte — bestimmt. Hierbei wurden rampen- und sinusförmige Längen- bzw. Kraftänderungen auf den Muskel aufgebracht und die Veränderungen im Receptorpotential und der Impulsantwort analysiert. Die experimentellen Befunde lassen den Schluß zu, daß der mechano-elektrische Transduktionsprozeß einen wesentlichen Beitrag zur Dynamik liefert, wobei Längenänderungen des Muskels den unmittelbaren Eingang für den Spindel-Transducer darstellen. Abhängig davon, ob die intrafusalen Muskelfasern gedehnt werden oder sich verkürzen können, zeigen die Receptorpotentialänderungen ein PDT1- bzw. ein Verzögerungs-Verhalten. Mögliche molekulare Mechanismen des lonentransportes durch die Receptormembran werden zur Erklärung dieser Änderungen in den Transducereigenschaften herangezogen. Die Formulierung eines linearen Modells gestattet eine hinreichend genaue Beschreibung der einzelnen Teilsysteme: Muskel, Transducer und Encoder sowie der komplexen Receptordynamik. Nur im Bereich großer Längenänderungen, wo der sog. overstretch auftritt, reicht die lineare Approximation nicht mehr aus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andersson-Cedergren, E., Karlsson, U.: Muscle spindles from frogspindle components at various functional conditions, p. 2. Proc. II. Intern. Congr. on Muscle diseases, Perth 1971

  • Bridgman, C.F., Eldred, E.: Hypothesis for a pressure sensitive mechanism in muscle spindles. Science 143, 481–482 (1964)

    Google Scholar 

  • Chaplain, R.A., Michaelis, B., Coenen, R.: Systems analysis of biological receptors. I. A quantitative description of the input-output characteristics of the slowly adapting stretch receptor of the crayfish. Kybernetik 9, 85–95 (1971)

    Google Scholar 

  • Crowe, A., Ragab, A.H.M.: Studies on the fine structure of the capsular region of tortoise muscle spindles. J. Anat. (Lond.) 107, 257–269 (1970)

    Google Scholar 

  • Fukami, Y.: Accomodation in afferent nerve terminals of snake muscle spindle. J. Neurophysiol. 33, 475–489 (1970)

    Google Scholar 

  • Fulpius, B., Baumann, F.: Effects of sodium, potassium, and calcium ions on slow and spike potentials in single photoreceptor cells. J. gen. Physiol. 53, 541–561 (1969).

    Google Scholar 

  • Fuortes, M.G.F.: Generation of responses in receptor. In: Loewenstein,W.R. (Ed.): Handbook of Sensory Physiology, Vol. I, p. 243–268. Berlin-Heidelberg-New York: Springer 1971

    Google Scholar 

  • French, A.S., Holden, A.V.: Alias-free sampling of neuronal spike trains. Kybernetik 8, 165–171 (1971)

    Google Scholar 

  • Gray, E.G.: The spindle and extrafusal innervation of a frog muscle Proc. roy. Soc. B 146, 416–430 (1956)

    Google Scholar 

  • Houk, S.C., Cornew, R.W., Stark, L.: A model of adaptation in amphibian spindle receptors. J. Theor. Biol. 12, 196–215 (1966)

    Google Scholar 

  • Husmark, I., Ottoson, D.: Relation between tension and sensory response of the isolated frog muscle spindle during stretch. Acta physiol. scand. 79, 321–334 (1970)

    Google Scholar 

  • Husmark, I., Ottoson, D.: The contribution of mechanical factors to the early adaptation of the spindle response. J. Physiol. (Lond.) 212, 577–592 (1971a)

    Google Scholar 

  • Husmark, I., Ottoson, D.: Ionic effects on spindle adaptation. J. Physiol. (Lond.) 218, 257–269 (1971b)

    Google Scholar 

  • Ito, F.: Functional properties of tandem spindles in comparison with those of muscle spindles of the frog. Jap. J. Physiol. 19, 641–651 (1969)

    Google Scholar 

  • Karlsson, U., Andersson-Cedergren, E., Ottoson, D.: Cellular organization of the frog muscle spindle as revealed by serial sections for electronmicroscopy. J. Ultrastruct. Res. 14, 1–35 (1966)

    Google Scholar 

  • Karlsson, U., Hooker, W.M., Bendeich, E.G.: Quantitative changes in the frog muscle spindle with passive stretch. J. Ultrastruct. Res. 36, 743–756 (1971)

    Google Scholar 

  • Katz, B.: The efferent regulation of the muscle spindle of the frog. J. exp. Biol. 26, 201–217 (1949)

    Google Scholar 

  • Katz, B.: Action potentials from a sensory nerve ending. J. Physiol. (Lond.) 111, 248–260 (1950)

    Google Scholar 

  • Katz, B.: The terminations of the afferent nerve fibre in the muscle spindle of the frog. Phil. Trans. roy. Soc. B, 243, 221–240 (1961)

    Google Scholar 

  • Kirkwood, R.A.: The frequency response of frog muscle spindles under various conditions. J. Physiol. (Lond.) 222, 135–160 (1972)

    Google Scholar 

  • Knight, B.W.: Dynamics of encoding in a population of neurons. J. gen. Physiol. 59, 734–766 (1972)

    Google Scholar 

  • Michaelis, B., Chaplain,R.A.: The encoder mechanism of receptor neurons. Kybernetik 13, 6–23 (1973a)

    Google Scholar 

  • Michaelis, B., Chaplain, R.A.: A systems theoretical approach to biological membranes. I. Formulation of a generalized model for electrical phenomena in excitable membranes. Kybernetik 12, 119–132 (1973b)

    Google Scholar 

  • Milecchia, R., Mauro, A.: The ventral photoreceptor cells of Limulus. III. A voltage-clamp study. J. gen. Physiol. 54, 331–351 (1969)

    Google Scholar 

  • Ottoson, D., Shepherd, G.M.: Changes of length within the frog muscle spindle during stretch as shown by stroboscopic photomicroscopy. Nature (Lond.) 220, 912–914 (1968)

    Google Scholar 

  • Ottoson, D., Mc Reynolds, J.S., Shepherd, G.M.: Sensitivity of isolated frog muscle spindle during and after stretching. J. Neurophysiol. 32, 24–34 (1969)

    Google Scholar 

  • Ottoson, D., Shepherd, G.M.: Steps in impulse generation in the isolated muscle spindle. Acta physiol. scand. 79, 423–430 (1970)

    Google Scholar 

  • Ottoson, D., Shepherd, G.M.: Length changes within isolated frog muscle spindle during and after stretching. J. Physiol. (Lond.) 207, 747–759 (1970b)

    Google Scholar 

  • Ottoson, D., Shepherd, G.M.: Synchronization of activity in afferent nerve branches within the frog's muscle spindle. Acta physiol. scand. 80, 492–501 (1970c)

    Google Scholar 

  • Ottoson, D., Shepherd, G.M.: Transducer characteristics of the muscle spindle as revealed by its receptor potential. Acta physiol. scand. 82, 545–554 (1971)

    Google Scholar 

  • Ottoson, D.: Functional properties of a muscle spindle with no fluid space. Brain Res. 41, 471–474 (1972)

    Google Scholar 

  • Poppele, R.E., Chen, W.J.: Repetitive firing of mammalian muscle spindle. J. Neurophysiol. 35, 357–364 (1972)

    Google Scholar 

  • Shepherd, G.M., Ottoson, D.: Response of the isolated muscle spindle to different rates of stretching. Cold Spr. Harb. Symp. quant. Biol. 30, 95–103 (1965)

    Google Scholar 

  • Terzuolo, C.A., Bayly, E.J.: Data transmission between neurones. Kybernetik 6, 124–130 (1969)

    Google Scholar 

  • Toyama, K.: An analysis of impulse discharge from the spindle receptor. Jap. J. Physiol. 16, 113–125 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coenen, R., Chaplain, R.A. Systems analysis of biological receptors. Kybernetik 13, 183–193 (1973). https://doi.org/10.1007/BF00274884

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00274884

Keywords

Navigation