Skip to main content
Log in

Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenothera

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Summary

  1. 1)

    DNA has been isolated from the five genetically distinguishable plastid types of Oenothera, subsection Euoenothera. DNA of plastomes I to IV was obtained from plants with identical nuclear backgrounds containing the genotype AA of Oenothera hookeri whereas the DNA of plastome V came from Oenothera argillicola (genotype CC).

  2. 2)

    The DNAs of the five basic Euoenothera wild-type plastomes can be distinguished by restriction endonuclease analysis with Sal I, Pst I, Kpn I, Eco RI and Bam HI. The fragment patterns exhibit distinct common features as well as some degree of variability.

  3. 3)

    Physical maps for the circular DNAs of plastome I, II, III and V could be constructed using the previously detailed map of plastome IV DNA (Gordon et al. 1981). This has been achieved by comparing the cleavage products generated by restriction endonucleases Sal I, Pst I and Kpn I which collectively result in 36 sites in each of the five plastome DNAs, and by hybridization of radioactively labelled chloroplast rRNA or chloroplast cRNA probes of spinach to Southern blots of appropriate restriction digests. The data show that the overall fragment order is the same for all five plastome DNAs. Each DNA molecule is segmentally organized into four regions represented by a large duplicated sequence in inverted orientation whose copies are separated by two single-copy segments.

  4. 4)

    The alterations in position of restriction sites among the Euoenothera plastome DNAs result primarily from insertions/deletions. Eleven size differences of individual fragments in the Sal I, Pst I and Kpn I patterns measuring 0.1–0.8 Md (150–1,200 bp) relative to plastome IV DNA have been located. Most changes were found in the larger of the two single-copy regions of the five plastomes. Changes in the duplication are always found in both copies. This suggests the existence of an editing mechanism that, in natural populations, equalizes or transposes any change in one copy of the repeat to the equivalent site of the other copy.

  5. 5)

    Detailed mapping of the two rDNA regions of the five plastomes, using the restriction endonucleases Eco RI and Bam HI which each recognize more than 60 cleavage sites per DNA molecule, disclosed a 0.3 Md deletion in plastome III DNA and a 0.1 Md insertion in plastome V DNA relative to DNA of plastome IV, I and II. These changes are most probably located in the spacer between the genes for 16S and 23S rRNA and are found in both rDNA units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pairs

kbp:

kilobase pairs

Md:

Megadalton

rDNA:

ribosomal DNA

rRNA:

ribosomal RNA

cRNA:

complementary RNA

Literature

  • Atchison, B.A.; Whitfeld, P.R.; Bottomley, W. (1976): Comparison of chloroplast DNAs by specific fragmentation with Eco RI endonuclease. Mol. Gen. Genet. 148, 263–269

    Google Scholar 

  • Bedbrook, J.R.; Kolodner, R. (1979): The structure of chloroplast DNA. Ann. Rev. Plant Physiol. 30, 93–620

    Google Scholar 

  • Bedbrook, J.R.; Kolodner, R.; Bogorad, L. (1977): Zea mays chloroplast ribosomal RNA genes are part of a 22,000 base pair inverted repeat. Cell 11, 739–749

    Google Scholar 

  • Bohnert, H.J.; Driesel, A.J.; Crouse, E.J.; Gordon K.; Herrmann, R.G.; Steinmetz, A.; Mubumbila, M.; Keller, M.; Burkard, G.; Weil, J.H. (1979): Presence of a transfer RNA gene in the spacer sequence between the 16S and 23S rRNA genes of spinach chloroplast DNA. FEBS Lett. 103, 52–56

    Google Scholar 

  • Bohnert, H.J.; Driesel, A.J.; Herrmann, R.G. (1977): Transcription and processing of transcripts in isolated unbroken chloroplasts. In: Acides Nucléiques et Synthese des Proteines chez les Végétaux. (eds. Bogorad, L.; Weil, J.H.) pp. 213–218. Paris: CNRS

    Google Scholar 

  • Borst, P.; Bos, J.L.; Grivell, L.A.; Groot, G.S.P.; Heyting, C.; Moorman, A.F.M.; Sanders, J.P.M.; Talen, J.L.; van Kreijl, C.F.; van Ommen, G.J.B. (1977): The physical map of yeast mitochondrial DNA anno 1977. In: Mitochondria 1977 — Genetics and Biogenesis of Mitochondria, (eds. Bandlow, W.; Schweyen, R.J.; Wolf, K.; Kaudewitz, F.), pp. 212–254. Berlin: de Gruyter

    Google Scholar 

  • Botchan, M.; George, M.; Wilson, A.C. (1973): Cleavage of mouse DNA by a restriction enzyme as a clue to the arrangement of genes. Cold Spring Harbour Symp. Quant. Biol. 38, 383–395

    Google Scholar 

  • Cleland, R.E. (1962): Plastid behaviour in North American Euoenotheras. Planta 57, 699–712

    Google Scholar 

  • Cleland, R.E. (1972): Oenothera-Cytogenetics and Evolution. New York — London: Acad. Press

    Google Scholar 

  • Coen, D.M.; Bedbrook, J.R.; Bogorad, L.; Rich, A. (1977): Maize chloroplast DNA fragment encoding the large subunit of ribulosebisphosphate carboxylase. Proc. Nat. Acad. Sci. (USA) 74, 5487–5491

    Google Scholar 

  • Crouse, E.J.; Schmitt, J.M.; Bohnert, H.J.; Gordon, K.; Driesel, A.J.; Herrmann, R.G. (1978): Intramolecular compositional heterogeneity of Spinacia and Euglena chloroplast DNAs. In: Chloroplast Development (eds. Akoyunoglou, G.; Argyroudi-Akoyunoglou, J.H.), pp. 565–572. North Holland: Elsevier

    Google Scholar 

  • Driesel, A.J.; Crouse, E.J.; Gordon, K.; Bohnert, H.J.; Herrmann, R.G.; Steinmetz, A.; Mubumbila, M.; Keller, M.; Burkard, G.; Weil, J.H. (1979): Fractionation and identification of spinach chloroplast transfer RNAs and mapping of their genes on the restriction map of chloroplast DNA. Gene 6, 285–306

    Google Scholar 

  • Drillisch, M. (1975): Vergleichende Untersuchungen an den “A-Genotypen” von Oenothera. Diss. Universität Düsseldorf

    Google Scholar 

  • Federoff, N.V. (1979): On spacers. Cell 16, 697–710

    Google Scholar 

  • Frankel, R.; Scowcroft, W.R.; Whitfeld, P.R. (1979): Chloroplast DNA variation in isonuclear male-sterile lines of Nicotiana. Mol. Gen. Genet. 169, 129–135

    Google Scholar 

  • Gordon, K.H.J.; Crouse, E.J.; Bohnert, H.J.; Herrmann, R.G. (1981): Restriction endonuclease cleavage site map of chloroplast DNA from Oenothera parviflora (Euoenothera plastome IV). Theor. Appl. Genet. 59, 281–296

    Google Scholar 

  • Gordon, K.H.J.; Hildebrandt, J.W.; Bohnert, H.J.; Herrmann, R.G.; Schmitt, J.M. (1980): Analysis of the plastid DNA in an Oenothera plastome mutant deficient in ribulose bisphosphate carboxylase. Theor. Appl. Genet. 57, 203–207

    Google Scholar 

  • Herrmann, R.G.; Possingham, J.V. (1980): Plastid DNA — the Plastome. In: Results and Problems in Cell Differentiation: The Chloroplast, Vol. 10 (ed. Reinert, J.), pp. 45–96. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Herrmann, R.G.; Bohnert, H.J.; Kowallik, K.V.; Schmitt, J.M. (1975): Size, conformation and purity of chloroplast DNA from some higher plants. Biochim. Biophys. Acta 378, 305–317

    Google Scholar 

  • Herrmann, R.G.; Palta, H.K.; Kowallik, K.V. (1980a): Chloroplast DNA from three archegoniates. Planta 148, 319–327

    Google Scholar 

  • Herrmann, R.G.; Whitfeld, P.R.; Bottomley, W. (1980b): Construction of a Sal I/Pst I restriction map of spinach chloroplast DNA using low-gelling-temperature agarose electrophoresis. Gene 8, 179–191

    Google Scholar 

  • Herrmann, R.G.; Seyer, P.; Schedel, R.; Gordon, K.; Bisanz, C.; Winter, P.; Hildebrandt, J.W.; Wlaschek, M.; Alt, J.; Driesel, A.J.; Sears, B.B. (1980c): The plastid chromosomes of several dioctyledons. In: Biological Chemistry of Organelle Formation; 31st Colloquium-Mosbach (eds.: Bücher, Th.; Sebald, W.; Weiss, H.), pp. 97–112. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Holder, A.A. (1978): Peptide mapping of the ribulosebisphosphate carboxylase large subunit from the genus Oenothera. Carlsberg Res. Commun. 43, 391–399

    Google Scholar 

  • Kutzelnigg, H.; Stubbe, W. (1974): Investigations on plastome mutants in Oenothera. I. General considerations. Sub-Cell. Biochem. 3, 73–89

    Google Scholar 

  • Levings, C.S.; Pring, D.R. (1979): Mitochondria DNA of higher plants and genetic engineering. In: Genetic Engineering — Principles and Methods. I. (eds. Setlow, J.K.; Hollander, A.), pp. 205–222. New York, London: Plenum

    Google Scholar 

  • Metzlaff, M.; Börner, Th.; Hagemann, R. (1981): Variations of chloroplast DNAs in the genus Pelargonium and their biparental inheritance. Theor. Appl. Genet. 60, 37–41

    Google Scholar 

  • Palmer, J.D.; Thompson, W.F. (1981): Rearrangements in the chloroplast genomes of mung bean and pea. Proc. Nat. Acad. Sci. (USA) 78, 5533–5537

    Google Scholar 

  • Prunell, A.; Kopecka, H.; Strauss, F.; Bernardi, G. (1977): The mitochondrial genome of wild-type yeast cells. V. Genome evolution. J. Mol. Biol. 110, 17–52

    Google Scholar 

  • Raven, P.H.; Dietrich, W.; Stubbe, W. (1979): An outline of the systematics of Oenothera subsect. Euoenothera (Onagraceae). Syst. Bot. 4, 242–252

    Google Scholar 

  • Roizmann, B. (1979): The structure and izomerization of herpes simplex virus genomes. Cell 16, 481–494

    Google Scholar 

  • Sanders, J.P.M.; Borst, P. (1977): The organization of genes in yeast mitochondrial DNA. IV. Analysis of (dA.dT) clusters in yeast mitochondrial DNA by poly (U)-Sephadex chromatography. Molec. Gen. Gent. 157, 263–269

    Google Scholar 

  • Sanders, J.P.M.; Heyting, C.; Verbeet, M.P.; Meilink, F.C.P.W.; Borst, P. (1977): The organization of genes in yeast mitochondrial DNA. III. Comparison of the physical maps of the mitochondrial DNAs from three wild-type Saccharomyces strains. Molec. Gen. Genet. 157, 239–261

    Google Scholar 

  • Schmitt, J.M.; Bohnert, H.J.; Gordon, K.H.J.; Herrmann, R.; Bernardi, G.; Crouse, E.J. (1981): Compositional heterogeneity of the chloroplast DNAs from Euglena gracilis and Spinacia oleraceae. Eur. J. Biochem. 117, 375–382

    Google Scholar 

  • Scowcroft, W.R. (1979): Nucleotide polymorphism in chloroplast DNA of Nicotiana debneyi. Theor. Appl. Genet. 55, 133–137

    Google Scholar 

  • Shah, D.M.; Langley, C.H. (1979): Electron microscope heteroduplex study of Drosophila mitochondrial DNAs: evolution of A+T-rich region. Plasmid 2, 69–78

    Google Scholar 

  • Stubbe, W. (1959): Genetische Analyse des Zusammenwirkens von Genom und Plastom bei Oenothera. Z. Vererbungsl. 90, 288–298

    Google Scholar 

  • Stubbe, W. (1960): Untersuchungen zur genetischen Analyse des Plastoms von Oenothera. Z. Bot. 48, 191–218

    Google Scholar 

  • Stubbe, W. (1964): The role of the plastome in evolution of the genus Oenothera. Genetica 35, 28–33

    Google Scholar 

  • Upholt, W.B. (1977): Estimation of DNA sequence diversion from comparison of restriction endonuclease digests. Nucl. Acids Res. 4, 1257–1265

    Google Scholar 

  • Vedel, F.; Quetier, F.; Bayen, M. (1976): Specific cleavage of chloroplast DNA from higher plants by EcoRI restriction nuclease. Nature 263, 440–442

    Google Scholar 

  • Westhoff, P.; Nelson, N.; Bünemann, H.; Herrmann, R.G. (1981): Localization of genes for Coupling Factor subunits on the spinach plastid chromosome. Curr. Genet. 4, 109–120

    Google Scholar 

  • von Wettstein, D.; Poulsen, C.; Holder, A.A. (1978): Ribulose 1,5-bisphosphate carboxylase as a nuclear and chloroplast marker. Theor. Appl. Genet. 53, 193–197

    Google Scholar 

  • Wildman, S.G. (1979): Aspects of Fraction-I-Protein evolution. Arch. Biochem. Biophys. 196, 598–610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D. von Wettstein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, K.H.J., Crouse, E.J., Bohnert, H.J. et al. Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenothera . Theoret. Appl. Genetics 61, 373–384 (1982). https://doi.org/10.1007/BF00272860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272860

Key words

Navigation