Skip to main content
Log in

Computational methods for optimum design of large complex systems

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Computational procedures for optimal design of large complex systems are described. Requirements of a good algorithm are discussed. A general design optimization model applicable to several classes of problems is defined. Several optimization algorithms are outlined and differences between them are highlighted. Modern algorithms generate and use approximate Hessian of the Lagrange function to calculate the search direction. They are quite reliable and become extremely efficient when a potential constraint strategy is incorporated into them. Based on recent experience with them, they are recommended for general engineering design applications. Several other computational aspects are also discussed, such as robust implementation of algorithms, use of knowledge base in providing consulting and diagnostic support to the designer, interactive use of optimization, and role of a database and database management system in design optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abadie, J.; Carpentier, J. (1969): Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints. In: R. Fletcher (Ed.): Optimization, pp. 37–47. New York: Academic Press

    Google Scholar 

  • Adelman, H.M.; Haftka, R.T. (1984): Sensitivity analysis for discrete structural systems — a survey. NASA Technical Memorandum, NASA Langley Res. Ctr., Hampton, Virginia

    Google Scholar 

  • Arora, J.S.; Govil, A.K. (1977): Design sensitivity analysis with substructuring. J. Eng. Mech. Div., ASCE, 103, 537–548

    Google Scholar 

  • Arora, J.S.; Haug, E.J. (1979): Methods of design sensitivity analysis in structural optimization. AIAA J. 17, 970–974

    Google Scholar 

  • Arora, J.S. (1980): Analysis of optimality criteria and gradient projection methods for optimal strucutral design, 1. Computer Meth. Appl. Mech. Eng. 23, 185–213

    Google Scholar 

  • Arora, J.S. (1984): An algorithm for optimum strucutral design without line search, Chapter 20. In: Atrek, E.; Gallagher, R.H.; Ragsdell, K.M.; Zienkiewicz, O.C. (Eds.): New directions in optimum structural design. New York: Wiley

    Google Scholar 

  • Arora, J.S.; Belegundu, A.D. (1984): Structural optimization by mathematical programming methods. AIAA J. 22, 854–856

    Google Scholar 

  • Arora, J.S. (1985): Theoretical manual for IDESIGN. Techn. Rep. No. ODL-85.9, Optimal Design Laboratory, College of Engineering, University of Iowa, Iowa City, IA

    Google Scholar 

  • Arora, J.S.; Thanedar, P.B.; Tseng, C.H. (1985): User's manual for program IDESIGN. Techn. Rep. No. 85.10, Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, IA

    Google Scholar 

  • Arora, J.S.; Baenziger, G. (1986): Uses of Al in design optimization. Computer Meth. Appl. Mech. Eng. (to appear)

  • Ashley, H. (1982): On making things the best-aeronautical uses of optimization. J. Aircraft 19, 5–28

    Google Scholar 

  • Atrek, E.; Gallagher, R.H.; Ragsdell, K.M.; Zienkiewicz, O.C., Eds. (1984): New directions in optimum structural design. Proc. Intern. Symp. Optimum Structural Design, University of Arizona, Tucson, Arizona, 1981. New York: Wiley

    Google Scholar 

  • Balling, R.J.; Parkinson, A.R.; Free, J.C. (1984): OPTDES.BYU: An interactive optimization package with 2D/3D graphics. In: NASA Conference Publication 2327, J. Sobieski (Ed.): Recent experiences in multidisciplinary analysis and optimization. NASA Langley Research Center, Hampton, VA

    Google Scholar 

  • Belegundu, A.D.; Arora, J.S. (1981): Potential of transformation methods in optimal design. AIAA J. 19, 1372–1374

    Google Scholar 

  • Belegundu, A.D.; Arora, J.S. (1984a): A computational study of transformation methods for optimal design. AIAA J. 22, 535–542

    Google Scholar 

  • Belegundu, A.D.; Arora, J.S. (1984b): A recursive quadratic programming method with active set strategy for optimal design. Intern. J. Num. Methods in Eng. 20, 803–816

    Google Scholar 

  • Belegundu, A.D.; Arora, J.S. (1985): A study of mathematical programming methods for structural optimization, part I: Theory; part II: Numerical Aspects. Intern. J. Num. Methods in Eng. 21, 1583–1623

    Google Scholar 

  • Belsare, S.V.; Arora, J.S. (1983): An algorithm for engineering design optimization. Intern. J. Num. Methods in Eng. 19, 841–853

    Google Scholar 

  • Bennett, J.A.; Botkin, M.E., Eds. (1986): The optimum shape: Automated structural design. Proc. Intern. Symp., GM Research Laboratories, Warren, MI, September 30–October 1, 1985. New York: Plenum Press

    Google Scholar 

  • Chamberlain, R.M. (1979): Some examples of cycling in variable metric methods for constrained minimization. Math. Programming 16, 378–384

    Google Scholar 

  • Choi, K.K.; Haug, E.J.; Hou, J.W.; Sohoni, V.N. (1983): Pshenichny's linearization method for mechanical system optimization. ASME J. Mechanisms, Transmissions, Automation in Design 105, 97–103

    Google Scholar 

  • Choi, K.K.; Seong, H.G. (1985): A numerical method for shape design sensitivity analysis and optimization of built-up structures. Proc. GM Symp. on The Optimum Shape. Bennett, JA.; Botkin, M.E. (Eds.). New York: Plenum Press (to appear)

    Google Scholar 

  • Crane, R.L.; Hillstrom, K.E.; Minkoff, M. (1980): Solution of the general nonlinear programming problem with subroutine VMCON. ANL-80-64, Argonne National Laboratory, Argonne, Ill.

    Google Scholar 

  • Eschenauer, H.; Olhoff, N., Eds. (1983): Optimization methods in structural design. Proc. Euromech Colloquium 164, Siegen, FRG, 1982. Zurich: Bibliographisches Institut

    Google Scholar 

  • Fletcher, R.; Powell, M.J.D. (1973) : On modification of LDLT factorizations. AERE Rep., TP519

  • Fleury, C. (1982): Reconciliation of mathematical programming and optimality criteria methods. In: Morris, A.J. (Ed.): Foundations of structural optimization: A unified approach. New York: Wiley

    Google Scholar 

  • Fleury, C.; Braibant, V. (1984): Structural optimization: A new dual method using mixed variables. Rep. SA-115, Aerospace Lab., The University of Liege, Belgium; presented at the 25 AIAA/ASME/ASCE/AHS, Structures, Structural Dynamics and Materials Conference, Palm Springs, CA

    Google Scholar 

  • Gabriele, G.A.; Ragsdell, K. M. (1977): The generalized reduced gradient method: A reliable tool for optimal design. ASME J. Engin. Ind. Series B 99, 394–400

    Google Scholar 

  • Gabriele, G.A.; Ragsdell, K. M. (1980): Large scale nonlinear programming using the generalized reduced gradient method. ASME J. of Mech. Design 102, 566–573

    Google Scholar 

  • Gallagher, R.H.; Zienkiewicz, O.C., Eds. (1973): Optimum structural design: Theory and applications. New York: Wiley'

    Google Scholar 

  • Garcia-Palomares, V.M.; Mangasarian, O.L. (1976): Superlinearly Convergent Quasi-Newton algorithms for nonlinearly constrained optimization problem. Math. Programming 11, 1–13

    Google Scholar 

  • Gill, P.E.; Murray, W.; Saunders, M.A. (1975): Methods for computing and modifying the LVD factors of a matrix, Math. Comput. 29, 1051–1077

    Google Scholar 

  • Gill, P.E.; Murray, W.; Wright, M.H. (1981): Practical optimization. New York: Academic Press

    Google Scholar 

  • Gill, P.E.; Murray, W.; Saunders, M.A.; Wright, M.H. (1984a): Model building and practical implementation aspects in nonlinear programming. In: Schittkowski, K. (Ed.): Computational mathematical programming. Proc. NATO ASI, Bad Windsheim, Germany, July 23–August 2, pp 209–248. Berlin, Heidelberg, New York, Tokyo: Springer

    Google Scholar 

  • Gill, P.E.; Murray, W.; Saunders, M.A.; Wright, M.H. (1984b): User's guide for QPSOL (Version 3.2): A FORTRAN package for quadratic programming. Techn. Rep. SOL 84-6, Dep. of Operations Res., Stanford University, CA

    Google Scholar 

  • Gill, P.E.; Murray, W.; Saunders, M.A.; Wright, M.H. (1984c): User's guide for NPSOL (Version 2.1): A FORTRAN package for nonlinear programming. Techn. Rep. SOL 84-7, Dept. Operations Res., Stanford University, CA

    Google Scholar 

  • Haftka, R.T. (1985): Simultaneous analysis and design. AIAA J. 23, 1099–1103

    Google Scholar 

  • Haftka, R.T.; Kamat, M.P. (1985): Elements of structural optimization. Amsterdam: Martinus Nijhoff

    Google Scholar 

  • Han, S.P. (1976): Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Math. Programming 11, 263–282

    Google Scholar 

  • Han, S.P. (1977): A globally convergent method for nonlinear programming. J. of Optimization Theory Appl. 22, 297–309

    Google Scholar 

  • Harwell Subroutine Library (1976): Computer sciences and systems division. Building 89, A.E.R.E., Harwell Didcot, Oxon, England

    Google Scholar 

  • Haug, E.J.; Arora, J.S. (1979): Applied optimal design: Mechanical and structural systems. New York: Wiley-Interscience

    Google Scholar 

  • Haug, E.J.; Cea, J., Eds. (1981): Optimization of distributed parameter structures, vol. 1 and 2. Proc. NATO ASI Meeting, Iowa City, 1980, Sijthoff and Noordhoff International Publishers B.V., Alphen aan den Rijn, The Netherlands, Rockville, MD

    Google Scholar 

  • Haug, E.J.; Choi, K.K.; Hou, J.W.; Yoo, Y.M. (1984): A variational method for shape optimal design of elastic structures, chapter 5. In: Atrek, E. et al. (Eds.): New directions in optimum structural design. New York: Wiley

    Google Scholar 

  • Haug, E.J.; Choi, K.K.; Komkov, V. (1986): Design sensitivity analysis of structural systems. New York: Academic Press

    Google Scholar 

  • Hock, W.; Schittkowski, K. (1981): Test examples for nonlinear programming codes. In: Lecture notes in economics and mathematical systems, vol. 187. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Hsieh, C.C.; Arora, J.S. (1984): Design sensitivity analysis optimization of dynamic response. Computer Methods Appl. Mech. Eng. 43, 195–219

    Google Scholar 

  • Hsieh, C.C.; Arora, J.S. (1985): An efficient method for dynamic response optimization. AIAA J. 23, 1484–1486

    Google Scholar 

  • Kirsch, U. (1981): Optimum structural design. New York: McGraw-Hill

    Google Scholar 

  • Lev, O.E., Ed. (1981): Structural optimization: Recent developments and applications. Amer. Soc. Civ. Eng., NY

    Google Scholar 

  • Lim, O.K.; Arora, J.S. (1985): An RQP algorithm with active set strategy for optimum design. Techn. Rep. No. ODL 85.13, Optimal Design Laboratory, College of Engineering, University of Iowa, Iowa City, IA

    Google Scholar 

  • Lim, O.K.; Arora, J.S. (1986): An active set RQP algorithm for engineering design optimization. Computer Methods Appl. Mech. Eng. (to appear)

  • Maratos, N. (1978): Exact penalty function algorithms for finite dimensional and control optimization problems. Ph.D. Thesis, Imperial College, London

    Google Scholar 

  • Morris, A.J., Ed. (1982): Foundations of structural optimization. Proc. of NATO ASI Meeting Liege, Belgium, 1980. New York: Wiley Interscience

    Google Scholar 

  • Olhoff, N.; Taylor, J.E. (1983): On structural optimization. J. Appl. Mech. 50, 1139–1151

    Google Scholar 

  • Osyczka, A. (1984): Multicriterion optimization in engineering. New York: Halsted, Press, Wiley

    Google Scholar 

  • Paeng, J.K.; Arora, J.S. (1985): Dynamic response optimization of mechanical and structural systems with state space multiplier methods. Techn. Rep. No. 85.18, Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, IA

    Google Scholar 

  • Park, G.J.; Arora, J.S. (1985): Interactive design optimization with modern database management concepts. Techn. Rep. ODL 85.29, Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, IA

    Google Scholar 

  • Powell, M.J.D. (1978a): A fast algorithm for nonlinearly constrained optimization calculations. In: Lecture notes in mathematics, 630, pp. 144–157. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Powell, M.J.D. (1978b): Algorithms for nonlinear functions that use lagrangian functions. Math. Progr. 14, 224–248

    Google Scholar 

  • Pshenichny, B.N. (1970): Algorithms for the general problem of mathematical programming. Kibernetica 5, 120–125 (Russian-translated in Cybernetics, May 1973)

    Google Scholar 

  • Pshenichny, B.N.; Danilin, Y.M. (1978): Numerical methods in extremal problems. Moscow: Mir Publishers

    Google Scholar 

  • Ragsdell, K.M., Ed. (1985): Proceedings of the CAD/CAM robotics and automation international conference. University of Arizona, Tucson, Arizona

    Google Scholar 

  • Reklaitis, G.V.; Ravindran, A.; Ragsdell, K.M. (1983): Engineering optimization. New York: Wiley Interscience

    Google Scholar 

  • Rogers, J.L. ; Barthelemy, J-F.M. (1985) : An expert system for choosing the best combination of options in an general purpose program for automated design synthesis. Presented at 1985 International Conference on Computers in Engineering, ASME, August 4–8, Boston, MA

  • Rosen, J.B. (1961): The gradient projection method for nonlinear programming, part 11: Nonlinear constraints. J. Soc. Ind. Appl. Math. 9, 514–532

    Google Scholar 

  • Ryu, Y. S.; Haririan, M.; Wu, C.C.; Arora, J.S. (1985): Structural design sensitivity analysis of nonlinear response. Computers and Structures 21, 245–255

    Google Scholar 

  • Sargeant, R.W.H. (1974): Numerical methods for constrained optimization. P.E. Gill and W. Murray (Eds.). New York, Academic Press

  • Schittkowski, K. (1980): Nonlinear programming codes: Information, tests, performance. In: Lecutre notes in economic and mathematical systems, vol. 183. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Schittkowski, K. (1981): The nonlinear programming method of Wilson, Han and Powell with an Augmented lagrangian type line search function, part 1: Convergence analysis; part 2: An efficient implementation with least squares subproblems. Numer. Math. 38, 83–114; 115–127

    Google Scholar 

  • Schittkowski, K. (1983): On convergence of a sequential quadratic programming method with an augmented lagrangian line search function. Math. Operations Forsch. U. Statist. 14, 197–216

    Google Scholar 

  • Schittkowski, K., Ed. (1985): Computational mathematical programming. Proc. of NATO ASI, Bad Windsheim FRG, July 23–August 2. Berlin, Heidelberg, New York, Tokyo: Springer

    Google Scholar 

  • Schmit, L.A.; Fleury, C. (1980): Discrete-continuous variable structural synthesis using dual methods. AIAA J. 18, 1515–1524

    Google Scholar 

  • Schmit, L.A. (1981): Structural synthesis — Its genesis and development. AIAA J. 19, 1249–1263

    Google Scholar 

  • Sobieski, J., Ed. (1984): Recent experiences in multidisciplinarly analysis and optimization. NASA Conf. Publ. 2327, Proc. Symp. held at NASA Langley Research Center, Hampton, VA

  • Spillers, W.R. (1975): Iterative structural design. Amsterdam. North Holland

    Google Scholar 

  • SreekantaMurthy, T.; Arora, J.S. (1985): A survey of database management in engineering. Adv. Eng. Software 7, 126–133

    Google Scholar 

  • SreekantaMurthy, T.; Shyy, Y-K. ; Arora, J.S. (1986) : MIDAS: Management of information for design and analysis of systems. Adv. Eng. Software (to appear)

  • SreekantaMurthy, T.; Arora, J.S. (1986): Database design methodology for structural analysis and design optimization. Engineering with Computers (to appear)

  • Starnes, J.H.; Haftka, R. T. (1979): Preliminary design of composite wings for buckling, strength and displacement constraints. J. Aircraft 16, 564–570

    Google Scholar 

  • Thanedar, P. B.; Arora, J. S. (1985): An efficient hybrid optimization method and its role in computer aided design. Techn. Rep. No. ODL 85.5, Optimal Design Laboratory, College of Engineering, University of Iowa, Iowa City, IA

    Google Scholar 

  • Thanedar, P.B.; Arora, J.S.; Tseng, C.H. (1986): An efficient hybrid optimization method and its role in computer aided design. Computers and Structures (to appear)

  • Thanedar, P.B.; Park, G.J.; Lim, O.K.; Arora, J.S. (1985): Performance of some superlinearly convergent RQP optimization algorithms on structural design problems. Techn. Rep. No. ODL-85.12, Optimal Design Laboratory, College of Engineering, University of Iowa, Iowa City, IA

    Google Scholar 

  • Tseng, C.H.; Tsay, J.J.; Lim, O.K.; Park, G.J.; Arora, J.S. (1985): Performance of several optimization algorithms on a set of nonlinear programming test problems. Techn. Rep. No. ODL 85.19, Optimal Design Laboratory, College of Engineering, University of Iowa, Iowa City, IA

    Google Scholar 

  • Vanderplaats, G.N. (1982): Strucutral optimization — Past, present and future. AIAA J. 20, 992–1000

    Google Scholar 

  • Vanderplaats, G.N. (1984): Numerical optimization techniques for engineering design. New York: McGraw Hill

    Google Scholar 

  • Vanderplaats, G.N.; Sugimoto, H., Sprague, C.M. (1983): ADS-1: A new general purpose optimization program. Proc. 24th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, Lake Tahoe, Nevada

  • Venkayya, V.B. (1978): Structural optimization: A review and some recommendations. Intern. J. for Num. Methods in Eng. 13, 205–228

    Google Scholar 

  • Wilde, D.J. (1978): Globally optimal design. New York: Wiley

    Google Scholar 

  • Wilson, R.B. (1963): A simplical algorithm for concave programming. Ph.D. Dissertation, Harvard University, Cambridge, MA

    Google Scholar 

  • Wolfe, P. (1970): Methods of nonlinear programming. In: Abadie, J. (Ed.): Nonlinear programming, chapter 6. Amsterdam: North Holland

    Google Scholar 

  • Zoutendijk, G. (1960): Methods of feasible directions. Amsterdam: lsevier

    Google Scholar 

  • Zowe, J. (1984): Nondifferentiable optimization. In: Schittkowski, K. (Ed.): Computational mathematical programming. NATO-ASI series F, vol. 15, pp. 323–356. Berlin, Heidelberg, New York, Tokyo: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by. S.N. Atluri, November 3, 1985

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, J.S., Thanedar, P.B. Computational methods for optimum design of large complex systems. Computational Mechanics 1, 221–242 (1986). https://doi.org/10.1007/BF00272625

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272625

Keywords

Navigation