Skip to main content

Advertisement

Log in

Growth of large chromosomally abnormal T cell clones in ataxia telangiectasia patients is associated with translocation at 14q11

A model for other T cell neoplasia

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Human T cell malignancies often show chromosome breaks at 14q11, within the α chain locus of the human T cell antigen receptor, with translocation of the distal portion of 14 to one of several sites. In patients with ataxia telangiectasia (A-T) the majority of T cell chromosome translocations associated with this disorder appear to occur at the sites of the T cell antigen receptor genes 7p14, 7q35, and 14q11 and may result in clone formation. In three large proliferating A-T T cell clones we have observed (including one which became malignant) and in most T cell tumours reported, the clonal chromosome exchange involves one breakpoint at 14q11 with the second breakpoint occurring in a gene not involved in the immunoglobulin supergene family. Our observations on A-T patients confirm the suggestion that chromosome exchanges involving either t(7;14)(p14;q11), t(7;14)(q35;q11), inv(7) (p14q35), or t(7;7)(p14;q35) confer only a small proliferative advantage on T cells in vivo without the capacity for malignant transformation and that the potential for malignant change is not a feature of all these rearrangements, but is restricted to cells or clones with other chromosome exchanges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Saadi A, Palutke M, Krishma Kumar G (1980) Evolution of chromosomal abnormalities in sequential cytogenetic studies of ataxia telangiectasia. Hum Genet 55:23–29

    Google Scholar 

  • Anson DS, Choo KH, Rees DJG, Gianelli F, Gould K, Huddleston JA, Brownlee GG (1984) The gene structure of human antihaemophilic factor IX. EMBO J 3:1053–1060

    Google Scholar 

  • Aurias A, Dutrillaux B (1986) Probable involvement of immunoglobulin superfamily genes in most recurrent chromosomal rearrangements from ataxia telangiectasia. Hum Genet 72:210–214

    Google Scholar 

  • Aurias A, Dutrillaux B, Buriot D, Lejeune J (1980) High frequencies of inversion and translocation of chromosomes 7 and 14 in ataxia telangiectasia. Mutat Res 69:369–374

    Google Scholar 

  • Aurias A, Dutrillaux B, Griscelli C (1983) Tandem translocated t(14;14) in isolated and clonal cells in ataxia telangiectasia are different. Hum Genet 63:320–322

    Google Scholar 

  • Aurias A, Croquette MF, Nuyts JP, Griscelli C, Dutrillaux B (1986) New date on clonal anomalies of chromosome 14 in ataxia telangiectasia: tct(14;14) and inv(14). Hum Genet 72:22–24

    Google Scholar 

  • Baer R, Chen K-C, Smith SD, Rabbitts TH (1985) Fusion of an immunoglobulin variable gene and a T cell receptor constant gene in the chromosome 14 inversion associated with T cell tumours. Cell 43:705–713

    Google Scholar 

  • Barton P, Malcolm S, Murphy C, Ferguson-Smith MA (1982) Localisation of the human α-globin gene cluster to the short arm of chromosome 16 (16p12-16pter) by hybridisation in situ. J Mol Biol 156:269–278

    Google Scholar 

  • Beatty DW, Arens LJ, Nelson MM (1986) Ataxia-telangiectasia. X:14 translocation, progressive deterioration of lymphocyte numbers and function, and abnormal in vitro immunoglobulin production. S Afr Med J 69:115–118

    Google Scholar 

  • Butterworth SV, Taylor AMR (1986) A subpopulation of t(2;14) (p11;q32) cells in ataxia telangiectasia B lymphocytes. Hum Genet 73:346–349

    Google Scholar 

  • Butterworth SV, Taylor AMR (1987) A comparison of fresh and cultured T lymphocytes from patients with ataxia telangiectasia using T cell subset markers and chromosome translocations. Int J Cancer (in press)

  • Chance PF, Dyer KA, Kurachi K, Yoshitake S, Ropers HH, Weiacker P, Gartter PM (1984) Regional assignment of the human factor IX gene by molecular hybridisation. Cytogenet Cell Genet 37:435

    Google Scholar 

  • Collins MKL, Tanigawa G, Kissonerghis A-M, Rutter M, Proce KM, Tonegawa S, Owen MJ (1985) Regulation of T cell receptor gene expression in human T cell development. Proc Natl Acad Sci USA 82:4503–4507

    Google Scholar 

  • Croce CM, Nowell PC (1986) Molecular genetics of human B cell neoplasia. Adv Immunol 38:245–274

    Google Scholar 

  • Denny CT, Yoshikai Y, Mak TM, Smith SD, Hollis GF, Kirsch IR (1986a) A chromosome 14 inversion in a T cell lymphoma is caused by site specific recombination between immunoglobulin and T cell receptor loci. Nature 320:549–551

    Google Scholar 

  • Denny CT, Hollis GF, Hecht F, Morgan R,Link MP, Smith SD, Kirsch IR (1986b) Common mechanism of chromosome inversion in B-and T-cell tumours: Relevance to lymphoid development. Science 234:197–200

    Google Scholar 

  • Dewald GW, Noonan KJ, Spurbeck JL, Johnson DD (1986) T lymphocytes with 7;14 translocations:frequency of occurrence, breakpoints and clinical and biological significance. Am J Hum Genet 38:520–532

    Google Scholar 

  • Dubé ID, Raimondi SC, Pi D, Kalousek DK (1986) A new translocation t(10;14)(q24;q11) in T cell neoplasia. Blood 67:1181–1184

    Google Scholar 

  • Duhrsen U, Uppenkamp M, Uppenkamp I, Becher R, Engelhard M, Konig E, Meusers P, Meuer S, Brittinger G (1986) Chronic T cell leukaemia with unusual characteristics in ataxia telangiectasia. Blood 68:577–585

    Google Scholar 

  • Erikson J, Williams DC, Finan J, Nowell PC, Croce CM (1985) Locus of the α chain of the T cell receptor is split by a chromosome translocation in T cell leukaemias. Science 229:784–786

    Google Scholar 

  • Erikson J, Finger L, Sun L, Ar-Rushdi A, Nishikura K, Minowada J, Finan J, Emanuel BS, Nowell PC, and Croce CM (1986) Deregulation of c-myc by translocation of the α locus of the T cells receptor in T cell leukemias. Science 232:884–886

    Google Scholar 

  • Hecht F, Kaiser-McCaw B (1982) Ataxia telangiectasia; chromosomes before cancer. In: Bridges BA, Harnden DG (eds) Ataxia telangiectasia. A cellular and molecular link between cancer, neuropathology and immune deficiency. Wiley, Chichester, pp 235–241

    Google Scholar 

  • Hecht F, Morgan R, Kaiser-McCaw B, Hecht B, Smith SD (1984) Common region on chromosome 14 in T cell leukaemia and lymphoma. Science 226:1445–1447

    Google Scholar 

  • ISCN (1985) Harnden DG, Klinger HP (eds) An International System for Human Cytogenetic Nomenclature 1985. Karger Basel

    Google Scholar 

  • Isobe M, Erikson J, Emanuel BS, Nowell PC, Croce CM (1985) Location of gene for β subunit of human T cell receptor at band 7q35, a region prone to rearrangements in T-cells. Science 228:280–282

    Google Scholar 

  • Kennaugh AA, Butterworth SV, Hollis R, Baer R, Rabbitts TH, Taylor AMR (1986) The chromosome breakpoint at 14q32 in an ataxia telangiectasia t(14;14) T cell clone is different from the 14q32 breakpoint in Burkitt's and an inv(14) T cell lymphoma. Hum Genet 73:254–259

    Google Scholar 

  • Levitt R, Pierre RV White WL, Siekert RG (1978) Atypical lymphoid leukaemia in ataxia telangiectasia. Blood 52:1003–1011

    Google Scholar 

  • Lewis WH, Michalpoulos EE, Williams DL, Minden MD, Mak TW (1985) Breakpoints in the human T-cell antigen receptor α chain locus in two T cell leukaemia patients with chromosomal translocations. Nature 317:544–546

    Google Scholar 

  • McCaw BK, Hecht F, Harnden DG, Teplitz RL (1975) Somatic rearrangement of chromosome 14 in human lymphocytes. Proc Natl Acad Sci USA 72:2071–2075

    Google Scholar 

  • Manolov G, Manolova Y (1972) Marker band in one chromosome 14 from Burkitt's lymphomas. Nature 237:33–34

    Google Scholar 

  • Mathieu-Mahul D, Sigaux F, Chen Z, Bernheim A, Mauchauffe M, Daniel M-T, Berger R, Larsen C-J (1986) A t(8;14)(q24;q11) translocation in a T-cell leukaemia (L1-ALL) with c-myc and TcR-alpha chain locus rearrangements. Int J Cancer 38:835–840

    Google Scholar 

  • Mattei MG, Baeteman MA, Heilig R, Oberlé I, Davies K, Mandel JL, Mattei JF (1985) Localisation by in situ hybridisation of the coagulation-factor IX gene and the polymorphic DNA probes with respect to the fragile X site. Hum Genet 69:327–331

    Google Scholar 

  • Mure C, Waldmann RA, Morton CC, Bongiovanni KF, Waldmann TA, Shows TB, Seideman JG (1985) Human γ chain genes are rearranged in leukaemic T cells and map to the short arm of chromosome 7. Nature 316:549–552

    Google Scholar 

  • O'Connor RD, Brown MG, Francke U (1982) Immunologic and karyotypic studies in ataxia telangiectasia; specificity of breakpoints on chromosome 7 and 14 in lymphocytes from patients and relatives. In: Bridges BA, Harnden DG (eds) Ataxia telangiectasia. A cellular and molecular link between cancer, neuropathology and immune deficiency. Wiley, Chichester, pp 251–270

    Google Scholar 

  • Rabbitts TH, Stinson A, Forster A, Foroni L, Luzzatto L, Catovsky D, Hammarstrom L, Smith CIE, Jones D, Karpas A, Minowada J and Taylor AMR (1985) Heterogeneity of T cell β chain gene rearrangement in human leukaemia and lymphoma. EMBO J 4:2217–2224

    Google Scholar 

  • Rabbitts TH, Baer R, Bulawela L, Mengle-Gaw L, Taylor AMR, Rabbitts PH (1986) Molecular genetics of antigen receptors and associated chromosomal abnormalities in human leukaemias. Cold Spring Harbor Symp Quant Biol 51:923–930

    Google Scholar 

  • Raulet DH, Garman D, Saito H, Tonegawa S (1985) Developmental regulation of T cell receptor gene expression. Nature 314:103–107

    Google Scholar 

  • Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Geimsa staining. Nature 243:290–293

    Google Scholar 

  • Rowley JD (1984) Biological implications of consistent chromosome rearrangements in leukaemia and lymphoma. Cancer Res 44:3159–3168

    Google Scholar 

  • Royer HD, Ramarli D, Acuto O, Campen TJ, Reinherz EL (1985) Genes encoding the T cell receptor α and β subunits are transcribed in an ordered manner during intrathymic ontogeny. Proc Natl Acad Sci 82:5510–5514

    Google Scholar 

  • Shima EA, Le Beau MM, McKeithan TW, Minowada J, Showe LC, Mak TW, Minden MD, Rowley JD, Diaz MO (1986) Gene encoding the α chain of the T cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia. Proc Natl Acad Sci USA 83:3439–3443

    Google Scholar 

  • Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myclogenous leukamia. Nature 315:550–554

    Google Scholar 

  • Smith SD, Morgan R, Link MP, McFall P, Hecht F (1986) Cytogenetic and immunophenotypic analysis of cell lines established from patients with T cell leukemia/lymphoma. Blood 67:650–656

    Google Scholar 

  • Sparkes RS, Como R, Golde DW (1980) Cytogenetic abnormalities in ataxia telangiectasia with T cell chronic lymphocytic leukaemia. Cancer Genet Cytogenet 1:329–336

    Google Scholar 

  • Spector BD, Filipovich AH, Perry GS, Kersey JH (1982) Epidemiology of cancer in ataxia telangiectasia. In: Bridges BA, Harnden DG (eds) Ataxia telangiectasia. A cellular and molecular link between cancer, neuropathology and immune deficiency. In: Wiley, Chichester, pp 103–138

    Google Scholar 

  • Taylor AMR (1982) Cytogenetics of ataxia telangiectasia. In: Bridges BA, Harnden DG (eds) Ataxia telangiectasia. A cellular and molecular link between cancer, neuropathology and immune deficiency. Wiley, Chichester, pp 53–82

    Google Scholar 

  • Taylor AMR, Butterworth SV (1986) Clonal evolution of T cell chronic lymphocytic leukaemia in a patient with ataxia telangiectasia. Int J Cancer 37:511–516

    Google Scholar 

  • Taylor AMR, Oxford JM, Metcalfe JA (1981) Spontaneous cytogenetic abnormalities in lymphocytes from thirteen patients with ataxia telangiectasia. Int J Cancer 27:311–319

    Google Scholar 

  • wirschubsky Z, Tsichlis P, Klein G, Sumegi J (1986) Rearrangement of c-myc, pim 1, and M1v-1 and murine T-cell leukaemias. Int J Cancer 38:739–745

    Google Scholar 

  • Yancopoulos GD, Blackwell TK, Sah H, Hood L, Alt F (1986) Introduced T cell receptor variable region gene segments recombine in pre B cells: Evidence that B and T cells use a common recombinase. Cell 44:251–259

    Google Scholar 

  • Zech L, Hammarstrom L, Smith CIE (1983) Chromosomal aberrations in a case of T-cell CLL with concomitant IgA myeloma. Int J Cancer 32:431–435

    Google Scholar 

  • Zech L, Gahrton G, Hammarstrom L, Juliusson G, Mellstedt H, Robert KH, Smith CIE (1984) Inversion of chromosome 14 marks human T cell chronic lymphocytic leukaemia. Nature 308:858–860

    Google Scholar 

  • Zech L, Godal T, Hammarstrom K, Mellstedt H, Smith CIE, Totterman T, Went M (1986) Specific chromosome markers involved with chronic T lymphocyte tumours. Cancer Genet Cytogenet 21:67–77

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollis, R.J., Kennaugh, A.A., Butterworth, S.V. et al. Growth of large chromosomally abnormal T cell clones in ataxia telangiectasia patients is associated with translocation at 14q11. Hum Genet 76, 389–395 (1987). https://doi.org/10.1007/BF00272451

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272451

Keywords

Navigation