Skip to main content
Log in

Composition and molecular structure of chromoplast globules of Viola tricolor

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Plastoglobules have been isolated in pure form from petals of the pansy, Viola tricolor L. Their chemical composition has been determined up to a recovery of 96% dry weight. Triacyl glycerols (57%) as well as carotenoids and their esters (23%) are the main constituents. Polar lipids, proteins, alkanes, phytyl esters, plastid quinones, and steryl esters have been detected in smaller amounts (cf. Table 1). The mean diameter of chromoplast globules is 280±70 nm (corresponding to a volume of 11.7×106 nm3), their buoyant density 0.93 g cm−3. The plastoglobules are devoid of a surrounding unit membrane. However, electron microscopical evidence and analytical data are consistent with a structural model envisaging the globules to consist mainly of an apolar core, covered by a ‘half unit membrane’ of polar constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FA:

fatty acid

GA:

glutardialdehyde

GLC:

gas liquid chromatography

TLC:

thin-layer chromatography

References

  • Allen CF, Good P (1971) In: Pietro AS (ed) Methods in Enzymology, vol 23, Academic Press, New-York London, pp 523–538

    Google Scholar 

  • Bailey JL, Whyborn AG (1963) Biochim Biophys Acta 78: 163–174

    Google Scholar 

  • Barr R, Crane FL (1971) In: Pietro AS (ed) Methods in Enzymology, vol 23, Academic Press, New-York, London, pp 372–408

    Google Scholar 

  • Barr R, Magree L, Crane FL (1967) Am J Bot 54: 365–374

    Google Scholar 

  • Clark BR, Rubin RT, Arthur RJ (1968) Anal Biochem 24: 27–33

    Google Scholar 

  • Csupor L (1970) Planta med 19: 37–41

    Google Scholar 

  • Duncombe WG (1963) Biochem J 88: 7–10

    Google Scholar 

  • Egger K (1962) Planta 58: 664–667

    Google Scholar 

  • Falk H (1960) Planta 55: 525–532

    Google Scholar 

  • Folch J, Less M, Sloane-Standley GH (1957) J Biol Chem 226: 497–509

    Google Scholar 

  • Frey-Wyssling A, Kreutzer E (1958) Planta 51: 104–114

    Google Scholar 

  • Greenwood AD, Leech RM, Williams JP (1963) Biochim Biophys Acta 78: 148–162

    Google Scholar 

  • Gülz PG (1968) Phytochemistry 7: 1009–1017

    Google Scholar 

  • Hansmann P, Kleinig H (1982) Phytochemistry 21: 238–239

    Google Scholar 

  • Hashimoto H, Murakami S (1975) Plant Cell Physiol 16: 895–902

    Google Scholar 

  • Holloway PJ, Challen SB (1966) J Chromatogr 25: 336–346

    Google Scholar 

  • Kating H, Rinn W, Willuhn G (1970) Planta med 18: 130–146

    Google Scholar 

  • Kleinig H, Lempert U (1970) J. Chromatogr 53: 595–597

    Google Scholar 

  • Liaaen-Jensen S, Jensen A (1971) In: Pietro AS (ed) Methods in Enzymology, vol 23, Academic Press, New-York London, pp 586–602

    Google Scholar 

  • Lichtenthaler HK (1964) Ber Dtsch Bot Ges 77: 398–402

    Google Scholar 

  • Lichtenthaler HK (1966) Ber Dtsch Bot Ges 79: 82–88

    Google Scholar 

  • Lichtenthaler HK (1968a) Z Pflanzenphysiol 59: 195–210

    Google Scholar 

  • Lichtenthaler HK (1968b) Endeavour 27: 144–149

    Google Scholar 

  • Lichtenthaler HK (1969) Protoplasma 68: 65–77

    Google Scholar 

  • Lichtenthaler HK (1970) Planta 90: 142–152

    Google Scholar 

  • Lichtenthaler HK (1977) In: Tevini H, Lichtenthaler HK (eds) Lipids and Lipid Polymers in Higher Plants, Springer-Verlag, Berlin Heidelberg New-York, pp 231–258

    Google Scholar 

  • Lichtenthaler HK, Peveling E (1967) Z. Pflanzenphysiol. 56: 153–165

    Google Scholar 

  • Lichtenthaler HK, Sprey B (1966) Z Naturforsch 21b: 690–697

    Google Scholar 

  • Liedvogel B, Sitte P, Falk H (1976) Cytobiologie 12: 155–174

    Google Scholar 

  • Neher R, Wettstein K (1951) Helv chim Acta 34: 2278–2285

    Google Scholar 

  • Popov AD, Stefanov KL (1968) J Chromatogr 37: 533–535

    Google Scholar 

  • Renkonen O (1962) Biochim Biophys Acta 56: 367–369

    Google Scholar 

  • Small DM (1970) Fed Proc 29: 1320–1326

    Google Scholar 

  • Sitte P (1963) Protoplasma 56: 197–201

    Google Scholar 

  • Sitte P (1974) Z Pflanzenphysiol 73: 243–265

    Google Scholar 

  • Sitte P (1977) Biol in uns Zeit 7: 65–74

    Google Scholar 

  • Sitte P (1981) In: Kiermayer O (ed) Cytomorphogenesis in Plants, Springer-Verlag, Wien New-York, pp 401–421

    Google Scholar 

  • Sitte P, Falk H, Liedvogel B (1980) In: Czygan FC (ed) Pigments in Plants, 2nd edn. Gustav Fischer Verlag, Stuttgart New-York, pp 117–148

    Google Scholar 

  • Steffen K, Walter F (1958) Planta 50: 640–670

    Google Scholar 

  • Steffens D, Blos J, Schoch S, Rüdiger W (1976) Planta 130: 151–158

    Google Scholar 

  • Tanford C (1978) Science 200: 1012–1018

    Google Scholar 

  • Thomson WW, Platt K (1973) New Phytol 72: 791–797

    Google Scholar 

  • Wettstein DV (1957) Exp Cell Res 12: 427–506

    Google Scholar 

  • Wuttke HG (1977) Inaugural-Dissertation, Universität Freiburg i.Br.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansmann, P., Sitte, P. Composition and molecular structure of chromoplast globules of Viola tricolor . Plant Cell Reports 1, 111–114 (1982). https://doi.org/10.1007/BF00272366

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00272366

Keywords

Navigation