Skip to main content
Log in

The pdf approach to turbulent flow

  • Review Paper
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Probability density function (pdf) methods provide a complete statistical description of turbulent flow fields at a single point or a finite number of points. Turbulent convection and finite-rate chemistry can be treated in closed and exact form with pdfs in contrast to methods based on statistical moments. The equations for pdfs at a finite number of points are indeterminate due to molecular transport and pressure-gradient terms which require pdfs of higher order. The theoretical foundation of pdfs methods are developed in this paper starting from the exact and linear equations on the functional level. The closure problem for single-point pdf equations is treated in detail and several closure models are analyzed. Turbulent combustion at low Mach numbers constitutes an important area of application and selected results for a turbulent methane flame are presented as an example. The extension of pdf methods to supersonic turbulent flows with and without chemical reactions are outlined. Progress in the numerical solution of pdf equations is reviewed briefly. In the concluding remarks, both the advantages and disadvantages of pdf methods are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arroyo, P., Dopazo, C., Valiño, L., and Jones, W.P. (1988), Numerical Simulation of Velocity and Concentration Fields in a Continuous Flow Reactor, 10th Int. Symp. Chem. Reaction Engin., Basle.

  • Averbukh, V.I., and Smolyanov, O.G. (1967), The Theory of Differentiation in Linear Topological Spaces, Uspekhi Mat. Nauk, 22, 201.

    Google Scholar 

  • Bilger, R.W. (1976), Turbulent Jet Diffusion Flames, Progr. Energy Combust. Sci., 1, 87.

    Google Scholar 

  • Bilger, R.W. (1980), Turbulent Flows with Non-premixed Reactants, in Turbulent Reacting Flows (P.A. Libby and F.A. Williams, eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • Bilger, R.W. (1988), Turbulent Diffusion Flames, Proc. 22nd Symp. (Int.) Combust., Seattle, to appear.

  • Billig, F.S., and Dugger, G.L. (1969), The Interaction of Shock Waves and Heat Addition in the Design of Supersonic Combustors, Proc. 12th Symp. (Int.) Combust., The Combustion Institute, p. 1125.

  • Borghi, R. (1988), Turbulent Combustion Modelling, Progr. Energy Combust. Sci., to appear.

  • Chen, J.-Y., and Kollmann, W. (1989a), Chemical Models for Pdf Modeling of Hydrogen-Air Non-Premixed Turbulent Flames, Combust. Flame, to appear.

  • Chen, J.-Y., and Kollmann, W. (1989b), Pdf Modeling of Chemical Mon-Equilibrium Effects in Turbulent Non-premixed Hydro-Carbon Flames, Combust. Flame, submitted.

  • Chen, J.-Y., Kollmann, W., and Dibble, R. W. (1989), Pdf Modeling of Turbulent Non-Premixed Methane Jet Flames, Combust. Flame, submitted.

  • Constantin, P, Foias, C., and Temam, R. (1985), Attractors Representing Turbulent Flows, Memoirs American Mathematical Society, No. 314, AMS, Providence, RI.

    Google Scholar 

  • Curl, R.L. (1963), Dispersed Phase Mixing: I. Theory and Effects in Simple Reactors, AIChE J., 9, 175.

    Google Scholar 

  • Daletskii, Y.L. (1962), Functional Integrals Connected with Operator Evolution Equations, Uspekhi Mat. Nauk, 17, 3.

    Google Scholar 

  • Dibble, R.W., Kollmann, W., Farshchi, M., and Schefer, R.W. (1986), Second Order Closure for Turbulent Non-Premixed Flames: Scalar Dissipation and Heat Release Effects, Proc. 21st Symp. (Int.) Combust., The Combustion Institute, p. 1329.

  • Dopazo, C. (1975), Probability Function Approach for a Turbulent Axisymmetric Heated Jet. Centerline Evolution, Phys. Fluids, 18, 397.

    Google Scholar 

  • Dopazo, C. (1979), Relaxation of Initial Probability Density Functions in the Turbulent Convection of Scalar Fields, Phys. Fluids, 22, 20.

    Google Scholar 

  • Dopazo, C., and O'Brien, E.E. (1974), Functional Formulation of Non-Isothermal Turbulent Reactive Flow, Phys. Fluids, 17, 1968.

    Google Scholar 

  • Farshchi, M. (1989), A Pdf Closure Model for Compressible Turbulent Chemically Reacting Flow, Paper AIAA-89-0390.

  • Feller, M.N. (1986), Infinite-Dimensional Elliptic Equations and Operators of Levy Type, Russ. Math. Surveys, 41, 119.

    Google Scholar 

  • Foias, C. (1974), A Functional Approach to Turbulence, Uspekhi Mat. Nauk, 29, 282.

    Google Scholar 

  • Givi, P., Ramos, J.I., and Sirignano, W.A. (1985), Probability Density Function Calculations in Turbulent Chemically Reacting Round Jets, Mixing Layers and One-Dimensional Reactors, J. Non-Equilib. Thermodyn., 10, 75.

    Google Scholar 

  • Hanjalic, K., and Launder, B.E. (1972), A Reynolds Stress Model of Turbulence and Its Application to Thin Shear Flows, J. Fluid Mech., 52, 609.

    Google Scholar 

  • Haworth, D.C., and Pope, S.B. (1986), A Second Order Monte Carlo Method for the Solution of the Ito Stochastic Differential Equation, Stochastic Anal. Appl., 4, 151.

    Google Scholar 

  • Haworth, D.C., and Pope, S.B. (1987), Monte Carlo Solutions of a Joint Pdf Equation for Turbulent Flows in General Orthogonal Coordinates, J. Comput. Phys., 72, 311.

    Google Scholar 

  • Hopf, E. (1952), Statistical Hydromechanics and Functional Calculus, J. Rational Mech. Anal., 1, 87.

    Google Scholar 

  • Hopf, E., and Titt, E.W. (1953), On Certain Special Solutions of the Φ-Equation of Statistical Hydromechanics, J. Math. Mech, 2, 587.

    Google Scholar 

  • Ievlev, V.M. (1973), Equations for the Finite-Dimensional Probability Distributions of Pulsating Variables in a Turbulent Flow, Soviet Phys. Dokl, 18, 117.

    Google Scholar 

  • Janicka, J., Kolbe, W., and Kollmann, W. (1979), Closure of the Transport Equation for the Probability Density Function of Scalar Fields, J. Non-equilib. Thermodyn., 4, 27.

    Google Scholar 

  • Johnson, J.A., Zhang, Y., and Johnson, L.E. (1988), Evidence of Reynolds Number Sensitivity in Supersonic Turbulent Shocklets, AIAA J., 26, 502.

    Google Scholar 

  • Jones, W.P., and Kollmann, W. (1987), Multi-Scalar Pdf Transport Equations for Turbulent Diffusion Flames, in Turbulent Shear Flows, vol. 5 (Durst, F., et al., eds.), Springer-Verlag, Berlin, p. 296.

    Google Scholar 

  • Keck, J.C. (1978), Rate-Controlled Constrained Equilibrium Method for Treating Reactions in Complex Systems, in Maximum Entropy Formalism (Levine, R.D., et al., eds.), MIT Press, Cambridge, MA.

    Google Scholar 

  • Keizer, J. (1987), Statistical Thermodynamics of Nonequilibrium Processes, Springer-Verlag, Berlin.

    Google Scholar 

  • Kollmann, W. (1987), Pdf-Transport Equations for Chemically Reacting Flows, Proc. US-France Workshop on Turb. React. Flows, Rouen, vol. 2, p. 20–1.

    Google Scholar 

  • Kollmann, W., and Janicka, J. (1982), The Probability Density Function of a Passive Scalar in Turbulent Shear Flow, Phys. Fluids, 25, 1755.

    Google Scholar 

  • Kollmann, W., and Wu, A. (1987), Scalar-Velocity Pdf Equations for Turbulent Shear Flows, Paper AIAA-87-1348.

  • Kollmann, W., Haminh, H., and Vandromme, D. (1985), The Behaviour of Turbulence Anisotropy Through Shock Waves and Expansions, Proc. Fifth Turbulent Shear Flows Conf., Cornell University.

  • Kosaly, G. (1986), Theoretical Remarks on a Phenomenological Model of Turbulent Mixing, Comb. Sci. Technol., 49, 227.

    Google Scholar 

  • Kosaly, G., and Givi, P. (1987), Modeling of Turbulent Molecular Mixing, Combust. Flame, 70, 101.

    Google Scholar 

  • Levich, E., Levich, B., and Tsinober, A. (1984), Helical Structures, Fractal Dimensions and Renormalisation Group Approach in Homogeneous Turbulence, in Turbulence and Chaotic Phenomena in Fluids (Tatsumi, T., ed.), Elsevier, Amsterdam, p. 309.

    Google Scholar 

  • Lewis, R.M., and Kraichnan, R.H. (1962), A Space-Time Functional Formalism for Turbulence, Comm. Pure Appl. Math., 15, 397.

    Google Scholar 

  • Lindenberg, K., Seshadri, V., Shuler, K.E., and West, B.J. (1983), Langevin Equations with Multiplicative Noise: Theory and Applications to Physical Process, in Probability Analysis and Related Topics, vol. 3, Academic Press, New York, p. 81.

    Google Scholar 

  • Lukacs, J. (1970), Characteristic Functions, Hafner, New York.

    Google Scholar 

  • Lumley, J.L. (1978), Computational Modeling of Turbulent Flows, Adv. Appl. Mech., 18, 123.

    Google Scholar 

  • Lundgren, T.S. (1967), Distribution Functions in the Statistical Theory of Turbulence, Phys. Fluids, 10, 969.

    Google Scholar 

  • Majda, A. (1984), Compressible Fluid Flow and Systems of Conservation Laws in Several Space Dimensions, Springer-Verlag, Berlin.

    Google Scholar 

  • Mandelbrot, B.B. (1974), Intermittent Turbulence in Self-Similar Cascades: Divergence of High Moments and Dimension of the Carrier, J. Fluid Mech., 62, 331.

    Google Scholar 

  • Masri, A.R., and Pope, S.B. (1989), Pdf Calculations of Piloted Turbulent Non-Premixed Flames of Methane, to appear.

  • Masri, A.M., Bilger, R.W., and Dibble, R.W. (1988), Turbulent Non-premixed Flames of Methane near Extinction: Mean Structure from Raman Measurements, Combust. Flame, 71, 245.

    Google Scholar 

  • Meyers, R.E., and O'Brien, E.E. (1981), The Joint Pdf of a Scalar and Its Gradient at a Point in a Turbulent Fluid, Comb. Sci. Technol., 26, 123.

    Google Scholar 

  • Monin, A.S. (1962), Lagrangean Hydrodynamic Equations for Incompressible Viscous Fluids, Prikl. Mat. Mekh., 26, 320.

    Google Scholar 

  • Monin, A.S., and Yaglom, A.M. (1975), Statistical Fluid Mechanics, vol. 2, MIT Press, Cambridge, MA.

    Google Scholar 

  • O'Brien, E.E. (1980), The Probability Density Function (pdf) Approach to Reacting Turbulent Flows, in Turbulent Reacting Flows (Libby, P.A., and Williams, F.A., eds.), Springer-Verlag, Berlin.

    Google Scholar 

  • Papamoschou, D. (1989), Structure of the Compressible Turbulent Shear Layer, Paper AIAA-89-0126.

  • Papamoschou, D., and Roshko, A. (1988), The Compressible Turbulent Shear Layer: An Experimental Study, J. Fluid Mech., 197, 453.

    Google Scholar 

  • Peter, N., and Kee, R.J. (1987), The Computation of Stretched Diffusion Flames Using a Reduced Four-Step Mechanism, Combust. Flame, 68, 17.

    Google Scholar 

  • Peters, N., and Williams, F. A. (1987), The Asymptotic Structure of Stoichiometric Methane Air Flames, Combust. Flame, 68, 185.

    Google Scholar 

  • Pope, S.B. (1982), An Improved Turbulent Mixing Model, Comb. Sci. Technol., 28, 131.

    Google Scholar 

  • Pope, S.B. (1985), Pdf Methods for Turbulent Reacting Flows, Progr. Energy Comb. Sci., 11, 119.

    Google Scholar 

  • Pope, S.B. (1987), Turbulent Premixed Flames, in Ann. Rev. Fluid Mech., vol. 19 (J.L. Lumley et al. eds.), p. 237.

    Google Scholar 

  • Pope, S.B., and Correa, S.M. (1986), Joint Pdf Calculations of a Non-Equilibrium Turbulent Diffusion Flame, Proc. 21st Symp. (Int.) Combust., The Combustion Institute, p. 1341.

  • Rogg, B., and Williams, F.A. (1988), Structure of Wet CO Flames with Full and Reduced Kinetic Mechanisms, Proc. 22nd Symp. (Int.) Combust., The Combustion Institute, in press.

  • Rotta, J.C. (1951), Statistische Theorie Nichthomogener Turbulenz, Z. Phys., 129, 547.

    Google Scholar 

  • Sirignano, W.A. (1987), Molecular Mixing in a Turbulent Flow: Some Fundamental Considerations, Comb. Sci. Technol., 51, 307.

    Google Scholar 

  • Skorohod, A.V. (1974), Integration in Hilbert Space, Springer-Verlag, Berlin.

    Google Scholar 

  • Soong, T.T. (1973), Random Differential Equations in Science and Engineering, Academic Press, New York.

    Google Scholar 

  • Speziale, C.G. (1983), Closure Models for Rotating Two-Dimensional Turbulence, Geophys. Astrophys. Fluid Dyn., 23, 69.

    Google Scholar 

  • Taylor, M. (1974), Pseudo Differential Operators, Lecture Notes in Mathematics, no. 416, Springer-Verlag, Berlin.

    Google Scholar 

  • Truesdell, C.A. (1954), The Kinematics of Vorticity, Indiana University Publications in Science Series, no. 19. Indiana University Press, Bloomington, IN.

    Google Scholar 

  • Vishik, M.I., Komech, A.I., and Fursikov, A.V. (1979), Some Mathematical Problems of Statistical Hydromechanics, Russian Math. Surveys, 34, 149.

    Google Scholar 

  • Wilcox, D.C. (1988), Reassessment of the Scale-Determining Equation for Advanced Turbulence Models, AIAA J., 26, 1299.

    Google Scholar 

  • Williams, F.A. (1985), Combustion Theory, 2nd edition, Benjamin-Cummings, Menlo Park, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.Y. Hussaini

This research was supported by NASA-Lewis Grants NAG 3-667 (T. Van Overbeke project monitor) and NAG 3-836 (R. Claus project monitor) and by a grant from the Spanish Ministry of Education (CAICYT) during the authors stay at the University of Zaragoza in 1985–1986).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kollmann, W. The pdf approach to turbulent flow. Theoret. Comput. Fluid Dynamics 1, 249–285 (1990). https://doi.org/10.1007/BF00271582

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271582

Keywords

Navigation