Skip to main content

Advertisement

Log in

Computer analysis of human immunodeficiency virus-1 envelope glycoprotein: Functional topogenic domains as signals for transfer and cleavage

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Analysis of human immunodeficiency virus-1 (HIV-1) gp160 amino acid sequences by computer programs that provide information on the possible conformation, hydrophilicity, and surface probability was used to identify possible functional domains. Amino acid domains that serve as signals for transfer of the polypeptide chain through the cell membrane were identified. Stop-transfer amino acid domains present in gp160 made possible the identification of the membrane anchorage hydrophobic amino acid sequence. The characterization of amino acid domains that serve as signals for proteolytic cleavage suggest that gp41 might be cleaved in a number of positions in the polypeptide chain, releasing parts of the carboxy-terminus amino acid sequence from that part of gp41 anchored in the cell membrane. The computer analysis deals with the mode of insertion of gp160 into the cell membrane by the cellular signal recognition protein system and subsequent processing of the gp160 to gp120 and gp41 (and subpeptides). The model for the positioning of these peptides is used to predict the organization of the processed envelope proteins in the viral envelope. The possible function of domains in gp120 and gp41 during the interaction with host cells during virus infection is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BeckerY., Virus Genes 3, 323–341, 1990.

    Google Scholar 

  2. WilleyR.L., BonifacinoJ.S., PottsB.J., MartinM.A., and KlausnerR.D., Proc Natl Acad Sci USA 85, 9580–9584, 1988.

    Google Scholar 

  3. McCuneJ.M., RabinL.B., FeinbergM.B., LiebermanM., KosekJ.C., ReyesG.R., and WeissmanI.L., Cell 53, 55–67, 1988.

    Google Scholar 

  4. AllanJ.S., ColiganJ.E., BurinF., McLaneM.F., SodorskiJ.G., RosenC.A., HaseltineW.A., LeeT.H., and EssexM., Science 228, 1091–1094, 1985.

    Google Scholar 

  5. VeroneseF.D., DeVicoA.L., CopelandT.D., OroszlanS., GalloR.C., and SarngadharanM.G., Science 229, 1402–1405, 1985.

    Google Scholar 

  6. GelderblomH., HausmanE.H.S., ÖzelM., PauliG., and KochM.A., Virology 156, 171–176, 1987.

    Google Scholar 

  7. GelderblomH., ReupkeH., and PauliG., Lancet, 2, 1016–1017, 1985.

    Google Scholar 

  8. FrankH., SchwarzH., GrafT., and SchäferW., Z. Naturforsch 33c, 124–138, 1978.

    Google Scholar 

  9. EbinaY., EllisL., JaruaginK., EderyM., GrafL., ClauserOu J., MasiarzF., KanY.W., GouldfineI.D., RothR.A., and RutherW.J., Cell 40, 747–758, 1985.

    Google Scholar 

  10. WalterP. and LingappaV.R., Ann Rev Cell Biol 2, 499–516, 1986.

    Google Scholar 

  11. SingerS.J., MaherP.A. and YaffeM.P., Proc Natl Acad Sci USA 84, 1015–1019, 1987.

    Google Scholar 

  12. VernerK. and SchatzG., Science 241, 1307–1313, 1988.

    Google Scholar 

  13. SaierM.H.Jr., WernerP.K., and MüllerM. Microbiol Rev 53, 333–366, 1989.

    Google Scholar 

  14. EvansE., GilmoreR., and BlobelG., Proc Natl Acad Sci USA 83, 5238–5247, 1986.

    Google Scholar 

  15. BolognesiD.P., AIDS 3, 5111–5118, 1989.

    Google Scholar 

  16. DevereuxJ., HaberlinP., and SmithiesO., Nucleic Acids Res 12, 387–395, 1984.

    Google Scholar 

  17. WolfH., ModrowS., MotzM., JamesonB.A., HermannG., and FörtschB., CABIOS 4, 187–191, 1988.

    Google Scholar 

  18. HoppT.P. and WoodsK.R., Immunology 20, 483–489, 1983.

    Google Scholar 

  19. KyteJ. and DoolittleR.F., J Mol Biol 157, 105–132, 1982.

    Google Scholar 

  20. EminiE.A., HughesJ.V., PerlowD.S., and BogerJ., J Virol 55, 836–839, 1985.

    Google Scholar 

  21. KarplusP.A. and SchulzG.E., Naturwissenschaften 72, 212–213, 1985.

    Google Scholar 

  22. ChouP.Y. and FasmanG.D., Ann Rev Biochem 47, 251–276, 1978.

    Google Scholar 

  23. GarnierJ., OsguthorpeD.J., and RobsonB., J Mol Biol 120, 97–120, 1978.

    Google Scholar 

  24. RatnerL., HaseltineW., PatarcaR., LivakK.J., StarcichB., JosephsS.F., DoranE.R., RafalskiJ.A., WhitehornE.A., BaumeisterK., IvanoffL., PettewayS.R.Jr., PearsonM.L., LautenbergerJ.A. PapasT.S., GhrayebJ., ChangN.T., GalloR.C., and Wong-StaalF., Nature 313, 277–284, 1985.

    Google Scholar 

  25. SabatiniD.D., KreibichG., MorimotoT., and AdesnikM., J Cell Biol 92, 1–22, 1982.

    Google Scholar 

  26. YoshimasaY., SeinoS., WhittakerJ., KakehiA., KuzuyaH., ImuraH., and BellG.I., Science 240, 784–787, 1988.

    Google Scholar 

  27. SeinoS., SeinoM., and BellG.I., Diabetes 39, 129–133, 1990.

    Google Scholar 

  28. BlobelG., Proc Natl Acad Sci USA 77, 1496–1500, 1980.

    Google Scholar 

  29. WatsonM.E.E., Nucleic Acids Res 12, 5145–5164, 1984.

    Google Scholar 

  30. RandallL.L. and HardyS.J.S., Science 243, 1156–1159, 1989.

    Google Scholar 

  31. JohnsonP. and WilliamsA.F., Nature 323, 74–76, 1986.

    Google Scholar 

  32. ClarkS.J., JefferiesW.A., BarclayA.N., GagnonJ., and WilliamsA.F., Proc Natl Acad Sci USA 84, 1649–1653, 1987.

    Google Scholar 

  33. KrissansenG.W., OwenM.J., VerbiW., and CrumptonM.J., Embo J 5, 1799–1808, 1986.

    Google Scholar 

  34. MostovK.E., FriedlenderM., and BlobelG., Nature 308, 37–43, 1984.

    Google Scholar 

  35. DeLamarterJ.F., HessionC., SemonD., GroughN.M., RothenbuhlerR., and MermodJ.J., Nucleic Acids Res 15, 2389–2390, 1987.

    Google Scholar 

  36. McGeophD.J., DolanA., DonaldS., and RixonF.J., J Mol Biol 181, 1–13, 1985.

    Google Scholar 

  37. LaskyL.A. and DowbenkoJ., DNA 3, 23–29, 1984.

    Google Scholar 

  38. SeikiM., HattoriS., HirayamaY., and YoshidaM., Proc Natl Acad Sci USA 80, 3618–3622, 1983.

    Google Scholar 

  39. GuyaderM., EmermanM., SonigoP., ClavelF., MontagnierL., and AlizonM., Nature 326, 662–669, 1987.

    Google Scholar 

  40. SodorskiJ., PatarcaR., PerkinsD., BriggsD., LeeT.-H., EssexM., ColiganJ., Wong-StallF., GalloR.C., and HaseltineW.A., Science 225, 421–424, 1984.

    Google Scholar 

  41. ChacrabartiL., GuyaderM., AlizonM., DanielM.D., DesrosiersR.C., TiollaisP. and SonigoP., Nature 328, 543–547, 1987.

    Google Scholar 

  42. SonigoP., AlizonM., StaskusK., KlatzmanD., ColeS., DanosO., RetzelE., TiollaisP., HaaseA., and Wain-HobsonS., Cell 42, 369–382, 1985.

    Google Scholar 

  43. SagataN., YasunagaT., Tsuzwku-KawamuraJ., OishiK., OgawaY., and IkawaY., Proc Natl Acad Sci USA 82, 677–681, 1985.

    Google Scholar 

  44. DuPont Biotech Update 4:4, 1989.

  45. WeigentD.A., HoeprichP.D., BostK.L., BrunckT.K., ReiherW.E.III, and BlalockJ.E., Biochem Biophys Res Comm 139, 367–374, 1986.

    Google Scholar 

  46. EvansD.J., McKeatingJ., MeredithJ.M., BurkeK.L., KatrakK., JohnA., FergusonM., MinorP.D., WeissR.A., and AlmondJ.W., Nature 339, 385–388, 1989.

    Google Scholar 

  47. Sanchez-PescadorR., PowerM.D., BarrP.J., SteimerK.S., StempienM.M., Brown-ShimerS.L., GeeW. W., RenardA., RandolphA., LevyJ.A., DinaD., and LuciwP., Science 227, 484–492, 1985.

    Google Scholar 

  48. GallaherW.R., Cell 50, 327–328, 1987.

    Google Scholar 

  49. LeonardC.K., SpellmanM.W., RiddleL., HarrisR.J., ThomasJ.N., and GregoryT.J., J Biol Chem 265, 10373–10382, 1990.

    Google Scholar 

  50. LaskyL.A., NakamuraG., SmithD.H., FennieC., ShimasakiC., PatzerE., BermanP., GregoryT., and CaponD.J., Cell 50, 975–985, 1987.

    Google Scholar 

  51. BrasseurR., LorgeP., GoormaghtighE., RuysschaertJ.M., EspionD., and BurnyA., Virus Genes 1, 325–332, 1988.

    Google Scholar 

  52. LeL., BrasseurR., WemersC., MenlemansG., and BurnyA., Virus Genes 1, 333–350, 1988.

    Google Scholar 

  53. HaffarO.K., DowbenkoD.J., and BermanP.W., J Cell Biol 107, 1677–1687, 1988.

    Google Scholar 

  54. McPhee D., Pavuk N., Doherty R., Haigwood N., and Kemp B. VIII International Congress of Virology, Berlin, August 26–31, 1990, Workshop 44-004.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, Y. Computer analysis of human immunodeficiency virus-1 envelope glycoprotein: Functional topogenic domains as signals for transfer and cleavage. Virus Genes 5, 287–312 (1991). https://doi.org/10.1007/BF00271529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271529

Key words

Navigation