Skip to main content
Log in

Organization and expression of a two-gene cluster in the arginine biosynthesis of Saccharomyces cerevisiae

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

In Saccharomyces cerevisiae, argB and argC define two adjacent and complementing loci, with mutants defective in two consecutive steps of arginine biosynthesis: N-acetylglutamate kinase (AG-kinase) and N-acetylglutamyl-phosphate reductase (AGPreductase). These enzymic activities are readily separated by ammonium sulfate fractionation or Sephadex G-200 chromatography. This suggests that each activity is carried in vivo by a different protein. The synthesis of the two enzymes is coordinately regulated, with an 85-fold difference in specific activities between fully repressed and fully derepressed cells. Missense mutations in the argB locus are defective in AGkinase only. Nonsense mutations in the argB locus are defective in both activities. Missense and nonsense mutations in the argC locus are defective in AGPreductase, with a few alleles also showing a reduced level of AGkinase. These data are best explained by assuming that argB and argC are two genes transcribed as a single messenger from argB to argC. This messenger produces in vivo two distinct proteins corresponding to the argB and argC gene products, either because translation can be initiated at the beginning of both genes, or because a large polypeptide is specifically cut in vivo to yield the gene products of argB and argC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhya, S., Gottesman, M., Crombrugghe, B. de, Court, D.: Transcription termination regulates gene expression. In: RNA polymerase (R. Losick and M. Chamberlin, eds.), pp. 719–730. New York: Cold Spring Harbor Monograph Series 1976

    Google Scholar 

  • Béchet, J., Grenson, M., Wiame, J.M.: Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12, 31–39 (1970)

    Google Scholar 

  • Bigelis, R., Keesey, J. Fink, G.R.: The his-4 fungal gene cluster is not polycistronic. ICN/UCLA Symposium on Eucaryotic genetic Systems. Salt Lake City 1977

  • Chaleff, R.S.: The inducible quinate-shikimate catabolic pathway in Neurospora crassa. I. Genetic organization. J. Gen. Microbiol. 81, 337–355 (1974)

    Google Scholar 

  • De Deken, R.H.: Pathway of arginine biosynthesis in yeast. Biochem. Biophys. Res. Commun. 8, 462–466 (1962)

    Google Scholar 

  • Delforge, J., Messenguy, F., Wiame, J.M.: The regulation of arginine biosynthesis in Saccharomyces cerevisiae. The specificity of argR - mutations and the general control of amino acid biosynthesis. Eur. J. Biochem. 57, 231–239 (1975)

    Google Scholar 

  • Denis-Duphil, M., Kaplan, J.G.: Fine structure of the ura2 locus in Saccharomyces cerevisiae. II. Meiotic and mitotic mapping studies. Mol. Gen. Genet. 145, 259–271 (1976)

    Google Scholar 

  • Dixon, M., Webb, E.C.: Enzyme fractionation by salting-out: a theoretical note. Adv. Protein Chem. 16, 197–218 (1961)

    Google Scholar 

  • Douglas, H.C., Hawthorne, D.C.: Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics 54, 911–916 (1966)

    Google Scholar 

  • Dubois, E., Hiernaux, D., Grenson, M., Wiame, J.M.: Specific induction of catabolism and its relation to repression of biosynthesis in arginine metabolism of Saccharomyces cerevisiae. J. Mol. Biol. 22, 383–406 (1978)

    Google Scholar 

  • Duntze, W., Manney, T.R.: Two mechanisms of allelic complementation among tryptophane synthetase mutants of Saccharomyces cerevisiae. J. Bacteriol. 96, 2085–2095 (1968)

    Google Scholar 

  • Fiers, W.: Chemical structure and biological activity of bacteriophage MS2 RNA. In: RNA phages (N.D. Zinder, ed.), pp. 353–396. New York: Cold Spring Harbor Laboratory 1975

    Google Scholar 

  • Fink, G.R.: Gene cluster and the regulation of biosynthetic pathways in fungi. In: Metabolic pathways, vol. 5, pp. 200–222 (H.J. Vogel, ed.). New York and London: Academic Press 1971

    Google Scholar 

  • Fink, G.R., Styles, C.A.: Gene conversion of deletions in the his4 region of yeast. Genetics 77, 231–244 (1974)

    Google Scholar 

  • Fluri, R., Coddington, A., Flury, V.: The product of the ade1 gene in Schizosaccharomyces pombe. A bifunctional enzyme catalyzing two distinct steps in purine biosynthesis. Mol. Gen. Genet. 147, 271–282 (1976)

    Google Scholar 

  • Gaertner, F.H., Cole, K.W.: A cluster gene: evidence for one gene, one polypeptide, five enzymes. Biochem. Biophys. Res. Commun. 75, 259–264 (1977)

    Google Scholar 

  • Giles, N.H., Case, M.E., Partridge, C.W.H., Ahmed, S.I.: A gene cluster in Neurospora crassa coding for an aggregate of five aromatic enzymes. Proc. Natl. Acad. Sci. U.S.A. 58, 1453–1260 (1967)

    Google Scholar 

  • Glansdorff, N., Sand, G.: Coordination of enzyme synthesis in the arginine pathway of E. coli. Biochim. Biophys. Acta. 108, 308–311 (1965)

    Google Scholar 

  • Hawthorne, D.C.: The selection of nonsense suppressors in yeast. Mutat. Res. 7, 187–197 (1969)

    Google Scholar 

  • Hawthorne, D.C., Leupold, U.: Suppressor mutation in yeast. Curr. Top. Microbiol. Immunol. 64, 1–47 (1974)

    Google Scholar 

  • Hilger, F., Culot, M., Minet, M., Piérard, A., Grenson, M., Wiame, J.M.: Studies on the kinetics of the enzyme sequence mediating arginine synthesis in Saccharomyces cerevisiae. J. Gen. Microbiol. 75, 33–41 (1973)

    Google Scholar 

  • Hoet, P.P., Wiame, J.M.: On the nature of argR mutation in Saccharomyces cerevisiae. Eur. J. Biochem. 43, 87–92 (1974)

    Google Scholar 

  • Jauniaux, J.C., Urrestarazu, L.A., Wiame, J.M.: Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J. Bacteriol. 133, 1096–1107 (1978)

    Google Scholar 

  • Korant, B.D.: Regulation of animal virus replication by protein cleavage. In: Proteases and biological control (E. Reich, D.B. Rifkin and E. Shaw eds.). Cold Spring Harbor Conferences on Cell Proliferation, 2, 621–644. New York: Cold Spring Harbor Laboratory 1975

    Google Scholar 

  • Lodish, H.F.: Regulation of in vitro protein synthesis by bacteriophage RNA by RNA tertiary structure. In: RNA phages (N.D. Zinder, ed.), pp. 301–318. New York: Cold Spring Harbor Laboratory 1975

    Google Scholar 

  • Lumsden, J., Coggins, J.: The subunit structure of the arom multienzyme complex of Neurospora crassa. A possible pentafunctional polypeptide chain. Biochem. J. 161, 599–607 (1977)

    Google Scholar 

  • Manney, T.R., Mortimer, R.K.: Allelic mapping in yeast by X-ray-induced mitotic recombination. Science 143, 581–582 (1964)

    Google Scholar 

  • Messenguy, F.: The regulation of arginine biosynthesis in Saccharomyces cerevisiae. Isolation of cis-dominant constitutive mutant for ornithine carbamoyltransferase. J. Bacteriol. 128, 49–55 (1976)

    Google Scholar 

  • Messenguy, F., Cooper, T.G.: Evidence that specific and “general” control of ornithine carbamoyltransferase production occurs at the level of transcription in Saccharomyces cerevisiae. J. Bacteriol. 130, 1253–1261 (1977)

    Google Scholar 

  • Minet, M.: La biosynthèse de l'arginine chez S. cerevisiae: contribution à l'étude de son déterminisme génétique et de sa regulation. Thesis. University of Brussels (1971)

  • Minson, C.A., Creaser, E.H.: Purification of a trifunctional enzyme, catalyzing three steps of the histidine pathway from Neurospora crassa. Biochem. J. 114, 49–56 (1969)

    Google Scholar 

  • Moore, C.W., Sherman, F.: Role of DNA sequences in genetic recombination in the iso-l-cytochrome c gene of yeast. I. Discrepancies between physical distances and genetic distances determined by five mapping procedures. Genetics 79, 397–418 (1975)

    Google Scholar 

  • Murthy, M., Rao, V., Deorukhakar, V.: Dependence of the expression of the radiation-induced gene conversion to arginine independence in diploid yeast on the amino acid concentration: effect on allelic mapping. Mutat. Res. 35, 207–212 (1976)

    Google Scholar 

  • Pringle, J.R.: Methods for avoiding proteolytic artifacts in studies of enzymes and other proteins from yeast. In: Methods in cell biology, vol. 12, pp. 148–184 (D.M. Prescott, ed.), New York: Academic Press 1975

    Google Scholar 

  • Ramos, F., Thuriaux, P., Wiame, J.M., Béchet, J.: The participation of ornithine and citrulline in the regulation of arginine metabolism in Saccharomyces cerevisiae. Eur. J. Biochem. 12, 40–47 (1970)

    Google Scholar 

  • Rawls, J.A., Fristrom, J.W.: A complex genetic locus that controls the first three steps of pyrimidine biosynthesis in Drosophila. Nature 255, 738–740 (1975)

    Google Scholar 

  • Salser, W., Fluch, M., Epstein, R.: The influence of the reading context upon the suppression of nonsense codons, III. Cold Spring Harbor Symp. Quant. Biol. 34, 513–520 (1969)

    Google Scholar 

  • Schürch, A., Miozzari, J., Hütter, R.: Regulation of tryptophan biosynthesis in Saccharomyces cerevisiae. Mode of action of 5-methyl-tryptophan and 5-methyl-tryptophan-sensitive mutants. J. Bacteriol. 117, 1131–1140 (1974)

    Google Scholar 

  • Sherman, F., Lawrence, C.W.: Saccharomyces. In: Handbook of Genetics (R.C. King, ed.), pp. 359–393. New York: Plenum Press 1974

    Google Scholar 

  • Sherman, F., Stewart, J.W.: The use of iso-l-cytochrome c mutants of yeast for elucidating the nucleotidic sequences that govern initiation of translation. Proc. Tenth FEBS Meeting, 38, 175–191. New York: North-Holland/American Elsevier 1975

    Google Scholar 

  • Steitz, J.A.: Ribosome recognition of initiator regions in the RNA bacteriophage genome. In: RNA phages (N.D. Zinder, ed.), pp. 319–352. New York: Cold Spring Harbor Laboratory 1975

    Google Scholar 

  • Sugiyama, T., Korant, B., Lonberg-Holm, K.: RNA virus gene expression and its control. Ann. Rev. Microbiol. 26, 467–502 (1972)

    Google Scholar 

  • Summers, D., Maizel, J.: Evidence for large precursor proteins in poliovirus synthesis. Proc. Natl. Acad. Sci. U.S.A. 59, 966–971 (1968)

    Google Scholar 

  • Tanemura, S., Bauerle, R.: Internal reinitiation of translation in polar mutants of the trpB gene of Salmonella typhimurium. Mol. Gen. Genet. 153, 135–143 (1977)

    Google Scholar 

  • Tauro, P., Holzner, V., Castorph, H., Hill, F., Schweizee, E.: Genetic analysis of non complementing fatty acid synthetase mutants in Saccharomyces cerevisiae. Mol. Gen. Genet. 129, 131–148 (1974).

    Google Scholar 

  • Thuriaux, P., Ramos, F., Piérard, A., Grenson, M., Wiame, J.M.: Regulation of the carbamoylphosphate synthetase belonging to the arginine biosynthetic pathway of Saccharomyces cerevisiae. J. Mol. Biol. 67, 277–287 (1972)

    Google Scholar 

  • Wiame, J.M.: Mechanism of the interaction between anabolism and catabolism of arginine in Saccharomyces cerevisiae. In: Recent advances in microbiology (Perez-Miravete and D. Pilaez, eds.), pp. 243–255. Mexico: Asociacion Microbiologica 1971

    Google Scholar 

  • Wolfner, M., Yep, D., Messenguy, F., Fink, G.R.: Integration of amino acid biosynthesis into the cell cycle of Saccharomyces cerevisiae. J. Mol. Biol. 96, 273–290 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ch. Auerbach

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minet, M., Jauniaux, JC., Thuriaux, P. et al. Organization and expression of a two-gene cluster in the arginine biosynthesis of Saccharomyces cerevisiae . Molec. Gen. Genet. 168, 299–308 (1979). https://doi.org/10.1007/BF00271500

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00271500

Keywords

Navigation