Skip to main content
Log in

Fusion of Agrobacterium and E. coli spheroplasts with Nicotiana tabacum protoplasts — Direct gene transfer from microorganism to higher plant

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Spheroplasts of Agrobacterium tumefaciens strains and E. coli were fused with protoplasts of Nicotiana tabacum. Fusion products were cultured in the presence of antibiotics to eliminate remaining bacterial spheroplasts. On hormone free medium, tobacco protoplasts treated with wild type Agrobacterium-strains formed colonies with an average frequency of 10−4. Opine synthesis was detected in the tissues. Some calli derived from protoplasts treated with A. tumefaciens C58C1pRi15834 formed typical hairy roots. Kanamycin resistant calli were obtained after fusion with A. tumefaciens containing pLGVTi23 neo (frequency=10−3). Fusion of E. coli spheroplasts containing a virulent pTiB6S3::RP4 co-integrate with tobacco protoplasts yielded two hormone independent growing calli producing octopine out of 105 microcalli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEG:

Polyethylene glycol

PVA:

Polyvinyl alcohol

References

  • Beiderbeck R (1977) Pflanzentumoren, E. Ulmer Verlag, Stuttgart

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Proc Natl Acad Sci USA 71: 3672–3676

    Google Scholar 

  • Chilton MD, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J (1982) Nature 295: 432–434

    Google Scholar 

  • Dahl Ga, Guyon P, Petit A, Tempé J (1983) Pl Sci Lett 32: 193–203

    Google Scholar 

  • Davey MR, Cocking EC, Freeman J, Pearce N, Tudor I (1980) Pl Sci Lett 18: 307–313

    Google Scholar 

  • Davey MR, Kumar A (1983) Int Rev Cytol Suppl 16: 219–299

    Google Scholar 

  • Drummond MH, Gordon MP, Nester EW, Chilton MD (1977) Nature 269: 535–536

    Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Gallupi GR, Golgberg SB, Hoffmann NL, Woo SC (1983) Proc Natl Acad Sci USA 80: 4803–4807

    Google Scholar 

  • Hasezawa S, Nagata T, Syono K (1981) Mol Gen Genet 182: 206–210

    Google Scholar 

  • Hasezawa S, Matsui C, Nagata T, Syono K (1983) Can J Bot 61: 1052–1057

    Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983a) Nature 303: 209–213

    Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens Jp, Van Montagu M, Schell J (1983b) EMBO J 2: 987–995

    Google Scholar 

  • Holsters M, Silva B, Genetello C, Engler G, Van Vliet F, De Block M, Villarroel R, Van Montagu M, Schell J (1978a) Plasmid 1: 456–467

    Google Scholar 

  • Hosters M, Silva B, Van Vliet F, Hernalsteens JP, Genetello C, Van Montagu M, Schell J (1978b) Mol Gen Genet 163: 335–338

    Google Scholar 

  • Hyland KJ, Hirschhorn RR, Avignolo C, Mercer WE, Ohta M, Galanti N, Jonak GJ, Baserga R (1984) Proc Natl Acad Sci USA 81: 400–404

    Google Scholar 

  • Jia JF, Shillito RD, Potrykus J (1983) Z Pflanzenphysiol 112: 1–6

    Google Scholar 

  • Keller WA, Melchers G (1973) Z Naturforschg 28c: 737–741

    Google Scholar 

  • Krens FH, Molendijk L, Wullems G, Schilperoort RA (1982) Nature 296: 72–74

    Google Scholar 

  • Lemmers M, De Beuckeleer M, Holsters M, Zambryski P, Depicker A, Hernalsteens JP, Van Montagu M, Schell J (1980) J Mol Biol 144: 353–376

    Google Scholar 

  • Linsmaier EM, Skoog F (1965) Physiol Plant 18: 100–126

    Google Scholar 

  • Lippincott JA, Lippincott BB (1980) In “Receptors and Recognition” (E.H. Beachey, ed), Series B, Vol 6, Chapman and Hall, London

    Google Scholar 

  • Martón L, Wullems GJ, Molendijk L, Schilperoort RA (1979) Nature 277: 129–131

    Google Scholar 

  • Matsui C, Hasezawa S, Tanaka N, Syono K (1983) Plant Cell Report 2: 30–32

    Google Scholar 

  • Nagata T (1978) Naturwissenschaften 65: 263–264

    Google Scholar 

  • Nagy JI, Maliga P (1976) Z Pflanzenphysiol 78: 453–455

    Google Scholar 

  • Otten L (1982) Pl Sci Lett 25: 15–27

    Google Scholar 

  • Otten LABM, Schilperoort RA (1978) Biochim Biophys Acta 527: 497–500

    Google Scholar 

  • Schilperoort RA, Wullems GJ (1983) Int Rev Cytol Suppl 16: 169–189

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98: 503–517

    Google Scholar 

  • Steinbiß HH, Broughton WJ (1983) Int Rev Cytol Suppl 16: 191–208

    Google Scholar 

  • Steinbiß HH, Stabel P (1983) Protoplasma 116: 223–227

    Google Scholar 

  • Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Cell 19: 729–739

    Google Scholar 

  • Weiss RL (1976) J Bact 2: 668–670

    Google Scholar 

  • Willmitzer L, De Beuckeleer M, Lemmers M, Van Montagu M, Schell J (1980) Nature 287: 359–361

    Google Scholar 

  • Willmitzer L, Sanchez-Serrano J. Buschfeld E, Schell J (1982) Mol Gen Genet 186: 16–22

    Google Scholar 

  • Wullems GJ, Molendijk L, Ooms G, Schilperoort RA (1981) Proc Natl Acad Sci USA 78: 4344–4348

    Google Scholar 

  • Zambryski P, Joos H, Genetello C, Van Montagu M, Schell J (1983) EMBO J 12: 2143–2150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by I. Potrykus

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hain, R., Steinbiß, HH. & Schell, J. Fusion of Agrobacterium and E. coli spheroplasts with Nicotiana tabacum protoplasts — Direct gene transfer from microorganism to higher plant. Plant Cell Reports 3, 60–64 (1984). https://doi.org/10.1007/BF00270972

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00270972

Keywords

Navigation