Advertisement

Applied Microbiology and Biotechnology

, Volume 20, Issue 5, pp 351–355 | Cite as

Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria

  • Eberhard Schmidt
  • Hans -Joachim Knackmuss
Applied Microbiology

Summary

3-Chlorobenzoate grown cells of Pseudomonas sp. strain B13 or Alcaligenes sp. strain A7-2 converted 3-fluorobenzoate to 2-fluoro-cis,cis-muconate with 87% yield. The latter strain produced 1.6 g/l. The type II muconate cycloisomerases of neither strain exhibit acitivity for 2-fluoro-cis,cis-muconate. Succinate grown cells of Pseudomonas sp. strain B13 converted benzoate to cis,cis-muconate (91% yield; 7.4 g/l). Enzyme tests confirmed that no muconate cycloisomerising enzyme was induced within 24 h.

Keywords

Enzyme Pseudomonas Succinate Alcaligenes Grown Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch Microbiol 99: 61–70Google Scholar
  2. Dorn E, Knackmuss H-J (1978a) Chemical structure and biodegradability of halogenated aromatic compounds: two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochim J 174: 73–84Google Scholar
  3. Dorn E, Knackmuss H-J (1978b) Chemical structure and biodegradability of halogenated aromatic compounds: substituent effects on 1,2-dioxygenation of catechol. Biochem J 174: 85–94Google Scholar
  4. Engesser K-H, Schmidt E, Knackmuss H-J (1980) Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-fluorobenzoate as growth substrate. Appl Environ Microbiol 39: 68–73Google Scholar
  5. Gaal A, Neujahr HY (1980) cis,cis-muconate cyclase from Trichosporon cutaneum. Biochem J 191: 37–43Google Scholar
  6. Knackmuss H-J, Hellwig M, Lackner H, Otting W (1976) Cometabolism of 3-methylbenzoate and methylcatechols by a 3-chlorobenzoate utilizing pseudomonas: accumulation of (+)-2,5-dihydro-4-methyl- and (+)-2,5-dihydro-2-methyl-5-oxo-furan-2-acetic acid. Eur J Appl Microbiol 2: 267–276Google Scholar
  7. Reineke W, Knackmuss H-J (1978a) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim Biophys Acta 542: 412–423Google Scholar
  8. Reineke W, Knackmuss H-J (1978b) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on dehydrogenation of 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid. Biochim Biophys Acta 542: 424–429Google Scholar
  9. Schmidt E (1976) Substituenteneinflüsse auf die Induktion der Enzyme für den Abbau von meta-Halogenbenzoaten durch Pseudomonas Stamm B13. Diplomarbeit, GöttingenGoogle Scholar
  10. Schmidt E, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192: 339–347Google Scholar
  11. Schmidt E, Remberg G, Knackmuss H-J (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192: 331–337Google Scholar
  12. Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss H-J (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39: 58–67Google Scholar
  13. Schwien U, Schmidt E (1982) Improved degradation of monochlorphenols by a constructed strain. Appl Environ Microbiol 44: 33–39Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Eberhard Schmidt
    • 1
  • Hans -Joachim Knackmuss
    • 1
  1. 1.Gesamthochschule WuppertalLehrstuhl für Chemische Mikrobiologie der Bergischen UniversitätWuppertalGermany

Personalised recommendations