Molecular and General Genetics MGG

, Volume 126, Issue 4, pp 275–290 | Cite as

Control of short leftward transcripts from the immunity and ori regions in induced coliphage lambda

  • Sidney Hayes
  • Waclaw Szybalski


The patterns of (1) leftward transcription from the repressed lambda prophage and (2) post-induction changes in the initiation of RNA synthesis within the immunity-ori region (which contains several regulatory elements including the λ repressor gene) were studied in detail. In the noninduced prophage about 80% of the leftward transcription originates from within the immunity region (cI-rex mRNA), 2% is from the ori segment (oop RNA) and the remainder is evenly distributed between the int and b2 regions (Fig.1). The sc startpoint for the 1880 nucleotide-long cI-rex transcript, which codes for the λ repressor and the rex product, in 325 nucleotides from the right imm434 endpoint (Figs. 2 and 3). Upon induction of Tof+ λ lysogens, the cI-rex transcription is rapidly turned off. After a brief lag, a 600 nucleotide-long transcript, denoted lit, appears in the left part of gene rex. The lit and cI-rex transcripts both terminate at the same ti site. No RNA synthesis is detected in the 400-nucleotide segment between the left imm434 endpoint and the ti terminator. This DNA segment contains the pL-oL promoter-operator region for the major leftward transcription. The increase in lit transcription parallels the increase in synthesis of oop RNA, as if both transcripts originated from a common promoter or were positively regulated by a common factor at their promoters. The oop startpoint so is located at least 2000 nucleotides upstream from the lit startpoint si. The synthesis of the oop and lit RNAs is coordinately stimulated up to 100-fold by host and phage DNA replication factors. The short 4S oop RNA is thought to prime leftward λ DNA replication initiated at the ori site.


Replication Factor Common Promoter Lambda Prophage Coliphage Lambda Leftward Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blattner, F. R., Dahlberg, J. E.: RNA synthesis startpoints in bacteriophage λ: are the promoter and operator transcribed? Nature (Lond.) New Biol. 237, 227–232 (1972)CrossRefGoogle Scholar
  2. Blattner, F. R., Dahlberg, J. E., Boettiger, J. K., Fiandt, M., Szybalski, W.: Distance from a promoter mutation to an RNA synthesis startpoint on bacteriophage λ DNA. Nature (Lond.) New Biol. 237, 232–236 (1972)CrossRefGoogle Scholar
  3. Borek, E., Ryan, A.: Lysogenic induction. Progress in nucleic acid research and molecular biology (J. N. Davidson and W. E. Cohn, eds.), vol. 13, p. 249–300. New York, N.Y.: Academic Press 1973Google Scholar
  4. Bøvre, K., Lozeron, H. A., Szybalski, W.: Techniques of RNA-DNA hybridization in solution for the study of viral transcription. Methods in virology, vol. 5 (K. Maramorosch and H. Koprowski, eds.), p. 271–292. New York, N.Y.: Academic Press 1971Google Scholar
  5. Bøvre, K., Szybalski, W.: Multistep DNA-RNA hybridization techniques. Methods in enzymology, vol. 21, Nucleic acids, part D (L. Grossman and K. Moldave, eds.), p. 350–383. New York, N.Y.: Academic Press 1971Google Scholar
  6. Castellazzi, M., Brachet, H., Eisen, H.: Isolation and characterization of deletions in bacteriophage λ residing as prophage in E. coli K12. Molec. gen. Genet. 117, 211–218 (1972)PubMedGoogle Scholar
  7. Champoux, J. J.: The sequence and orientation of transcription in bacteriophage λ. Cold Spr. Harb. Symp. quant. Biol. 35, 319–323 (1970)CrossRefGoogle Scholar
  8. Cohen, S. N., Hurwitz, J.: Genetic transcription in bacteriophage λ: Studies of λ mRNA synthesis in vivo. J. molec. Biol. 37, 387–406 (1968)CrossRefGoogle Scholar
  9. Court, D., Sato, K.: Studies of novel transducing variants of lambda: dispensability of genes N and Q. Virology 39, 348–352 (1969)CrossRefGoogle Scholar
  10. Dahlberg, J. E., Blattner, F. R.: Sequences of self-terminating RNA made near the origin of DNA replication of phage lambda. Fed. Proc. 32, 664 (1973)Google Scholar
  11. Davidson, N., Szybalski, W.: Physical and chemical characteristics of lambda DNA. The bacteriophage lambda (A. D. Hershey, ed.), p. 45–82. Cold Spring Harbor, N.Y.: Cold. Spring Harbor Laboratory (1971)Google Scholar
  12. Dove, W. F.: Strains of phage lambda in current use. Virology 38, 349–351 (1969)CrossRefGoogle Scholar
  13. Echols, H.: Developmental pathways for the temperate phage: Lysis vs. lysogeny. Ann. Rev. Genet. 6, 157–190 (1972)CrossRefGoogle Scholar
  14. Eisen, H., Ptashne, M.: Regulation of repressor synthesis. The bacteriophage lambda (A. D. Hershey, ed.), p. 239–245. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  15. Fiandt, M., Hradecna, Z., Lozeron, H. A., Szybalski, W.: Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNA of coliphages lambda and phi 80. The bacteriophage lambda (A. D. Hershey, ed.), p. 329–354. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  16. Fiandt, M., Szybalski, W.: Electron microscopy of the immunity region in coliphage lambda. Abstracts of the Ann. Meet. of the Amer. Soc. for Microbiol. p. 118 (1973)Google Scholar
  17. Fuerst, C. R.: Defective biotin-transducing mutants of bacteriophage lambda. Virology 30, 581–583 (1966)CrossRefGoogle Scholar
  18. Gottesman, M. E., Weisberg, R. A.: Prophage insertion and excision. The bacteriophage lambda (A. D. Hershey, ed.), p. 113–138. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  19. Guha, A., Saturen, Y., Szybalski, W.: Divergent orientation of transcription from the biotin locus. J. molec. Biol. 56, 53–62 (1971)CrossRefGoogle Scholar
  20. Gussin, G. N., Peterson, V., Loeb, N.: Deletion mapping of the λ rex gene. Genetics 74, 385–392 (1973)PubMedPubMedCentralGoogle Scholar
  21. Hayes, S. J.: Regulation of lambda repressor transcription. Fed. Proc. 31, 444 (1972)Google Scholar
  22. Hayes, S., Szybalski, W.: Possible primer for DNA replication in coliphage lambda. Fed. Proc. 32, 529 (1973a)Google Scholar
  23. Hayes, S., Szybalski, W.: Synthesis of RNA primer for lambda DNA replication is controlled by phage and host. Molecular cytogenetics (B. A. Hamkalo and J. Papaconstantinou, eds.), p. 277–284. New York, N.Y.: Plenum Publishing Co. 1973bGoogle Scholar
  24. Heinemann, S. F., Spiegelman, W. G.: Control of transcription of the repressor gene in bacteriophage lambda. Proc. nat. Acad. Sci. (Wash.) 67, 1122–1129 (1970)CrossRefGoogle Scholar
  25. Jacob, F., Wollman, E. L.: Etude génétique d'un bactériophage tempéré d'Escherichia coli. I. Le systéme génétique du bactériophage λ. Ann. Inst. Pasteur 87, 653–673 (1954)Google Scholar
  26. Kayajanian, G.: Studies on the genetics of biotin-transducing, defective variants of bacteriophage λ. Virology 36, 30–41 (1968)CrossRefGoogle Scholar
  27. Kellenberger, G., Zichichi, M. L., Weigle, J.: Mutations affecting the density of bacteriophage λ. Nature (Lond.) 187, 161–162 (1960)CrossRefGoogle Scholar
  28. Kourilsky, P., Bourguignon, M. F., Gros, F.: Kinetics of viral transcription after induction of prophage. The bacteriophage lambda (A. H. Hershey, ed.), p. 647–666. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  29. Kourilsky, P., Marcaud, L., Sheldrick, P., Luzzati, D., Gros, F.: Studies on the messenger RNA of bacteriophage λ. I. Various species synthesized early after induction of the prophage. Proc. nat. Acad. Sci. (Wash.) 61, 1013–1020 (1968)CrossRefGoogle Scholar
  30. Nijkamp, H. J. J., Szybalski, W., Ohashi, M., Dove, W. F.: Gene expression by constitutive mutants of coliphage lambda. Molec. gen. Genet. 114, 80–88 (1971)CrossRefGoogle Scholar
  31. Ptashne, M.: Repressor and its action. The bacteriophage lambda (A. H. Hershey, ed.), p. 221–237. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  32. Reichardt, L., Kaiser, A. D.: Control of λ repressor synthesis. Proc. nat. Acad. Sci. (Wash.) 68, 2185–2189 (1971)CrossRefGoogle Scholar
  33. Roberts, J.: Termination factor for RNA synthesis. Nature (Lond.) 224, 1168–1174 (1969)CrossRefGoogle Scholar
  34. Shimada, K., Campbell, A.: Int-constitutive mutants of bacteriophage lambda. Proc. Natl. Acad. Sci. (Wash.) in press (1973)Google Scholar
  35. Stevens, W. F., Adhya, S., Szybalski, W.: Origin and bidirectional orientation of DNA replication in coliphage lambda. The bacteriophage lambda (A. D. Hershey, ed.), p. 515–533. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  36. Szpirer, J., Thomas, R., Radding, C. M.: Hybrids of bacteriophages λ and ϕ80. A study of nonvegetative functions. Virology 37, 585–596 (1969)CrossRefGoogle Scholar
  37. Szpirer, J.: Le controle du développement des bactériophages tempérés. IV. Action spécifique du produit N au niveau d'une barrière de transcription. Molec. gen. Genet. 114, 297–304 (1972)CrossRefGoogle Scholar
  38. Szybalski, W.: Transcription and replication in E. coli bacteriophage lambda. Uptake of informative molecules by living cells (L. Ledoux, ed.), p. 59–82, Amsterdam: North-Holland Publ. Co. 1972Google Scholar
  39. Szybalski, W., Bøvre, K., Fiandt, M., Hayes, S., Hradecna, Z., Kumar, S., Lozeron, H. A., Nijkamp, H. J. J., Stevens, W. F.: Transcriptional units and their controls in Escherichia coli phage λ: Operons and scriptons. Cold Spr. Harb. Symp. quant. Biol. 35, 341–354 (1970)CrossRefGoogle Scholar
  40. Szybalski, W., Herskowitz, I.: Lambda genetic elements. The bacteriophage lambda (A. D. Hershey, ed.), p. 778–779. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971Google Scholar
  41. Taylor, K., Hradecna, Z., Szybalski, W.: Asymmetric distribution of the transcribing regions on the complementary strands of coliphage λ DNA. Proc. nat. Acad. Sci. (Wash.) 57, 1618–1625 (1967)CrossRefGoogle Scholar
  42. Westmoreland, B. C., Szybalski, W., Ris, H.: Mapping of deletions and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy. Science 163, 1343–1348 (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Sidney Hayes
    • 1
  • Waclaw Szybalski
    • 1
  1. 1.McArdle Laboratory for Cancer ResearchUniversity of WisconsinMadison

Personalised recommendations