Skip to main content
Log in

The depression of endolysin synthesis in bacteria infected with high multiplicities of phage λ

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The effect of multiplicity of infection was studied in Escherichia coli with λ phage, using phage endolysin as an example of a late gene product. A very sensitive endolysin assay method was used so that the initiation time of endolysin synthesis could be more accurately determined. It was observed that high multiplicity of infection (1) increases the rate of lysogenization, (2) progressively delays lysis time, and (3) significantly delays and reduces the synthesis of endolysin in λcIII+-infected cells. The extent of delay and reduction in endolysin synthesis increases with increasing multiplicity. In contrast, λcIII67cII68-infected cells show no delay in endolysin synthesis at high multiplicity of infection when compared with the λcIII+ cII+-infected cells. The results suggest that (1) the expression of cIII and cII genes is multiplicity dependent, (2) high multiplicity of infection enhances the expression of the cIII and cII genes, and (3) the expression of the cIII and cII genes interferes with the expression of the late genes. A model to explain how the expression of the cIII and cII genes interferes with the expression of the late genes is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M.H.: Bacteriophages. pp. 454–455 New York: Interscience 1959

    Google Scholar 

  • Appleyard, R.K.: Segregation of λ lysogenicity during bacterial recombination in E. coli K12. Genetics 39, 429 (1954)

    Google Scholar 

  • Belford, M., Wulff, D.: The role of the lambda cIII gene and the Escherichia coli catabolite gene activation system in the establishment of lysogeny by bacteriophage lambda. Proc. Nat. Acad. Sci. (Wash.) 71, 779–782 (1974)

    Google Scholar 

  • Brooks, K.: Studies in the physiological genetics of some suppressor sensitive mutants of bacteriophage lambda. Virology 26, 489–499 (1965)

    Google Scholar 

  • Calef, E., Neubauer, Z.: Active and inactive states of the cI gene in some λ defective phages. Cold Spr. Harb. Symp. Quant. Biol. 33, 765 (1968)

    Google Scholar 

  • Campbell, A.: Sensitive mutants of bacteriophage λ Virology 14, 22–32 (1961)

    Google Scholar 

  • Cohen, S.N. and Chang, A.C.Y.: Genetic expression of bacteriophage λ III. Inhibition of Escherichia coli nucleic acid and protein synthesis during λ development. J. Molec. Biol. 49, 557–575 (1970)

    Google Scholar 

  • Court, D., Green, L., Echols, H.: Positive and Negative regulation by the cII and cIII gene products of bacteriophage λ. Virology, 63, 484–491 (1975)

    Google Scholar 

  • Delbrück, M.: The growth of bacteriophage and lysis of the host. J. Gen. Physiol. 23, 643–660 (1940)

    Google Scholar 

  • Doermann, A.H.: Intracellular growth of bacteriophage. Carnegie Inst. Wash. Yearbook 47, 176 (1948)

    Google Scholar 

  • Dove, W.F.: Action of the lambda chromosome I. Control of functions late in bacteriophage development. J. Molec. Biol. 19, 187–201 (1966)

    Google Scholar 

  • Echols, H.: Regulation of lytic development. In: The Bacteriophage Lambda (A.D. Hershey, ed.). Cold Spring Harbor Laboratory, pp. 247–270 (1971)

  • Echols, H., Green, L.: Establishment and maintenance of repression by bacteriophage lambda: The role of the cI, cII and cIII proteins. Proc. Nat. Acad. Sci. (Wash.) 68, 2190–2194 (1971)

    Google Scholar 

  • Echols, H., Green, L., Oppenheim, A.B., Oppenheim, A., Honigman, A.: Role of the cro gene in bacteriophage λ development. J. Molec. Biol. 80, 203–216 (1973)

    Google Scholar 

  • Eisen, H., Brachet, P., Pereira da Silva, L. and Jacob, F.: Regulation of repressor expression in λ. Proc. Nat. Acad. Sci. (Wash.) 66, 855–862 (1970)

    Google Scholar 

  • Eisen, H., Fuerst, C.R., Siminovitch, L., Thomas, R., Lambert, L., Pereira da Silva, L., Jacob, F.: Genetic and physiology of defective lysogeny in K12 (λ): Studies of early mutants. Virology 30, 224–241 (1966)

    Google Scholar 

  • Fry, B.A.: Conditions for the infection of Escherichia coli with lambda phage and for the establishment of lysogeny. J. Gen. Microbiol. 21, 676–684 (1959)

    Google Scholar 

  • Fry, B.A., Gros, F.: The metabolic activities of E. coli during the establishment of lysogeny. J. Gen. Microbiol. 21, 685–692 (1959)

    Google Scholar 

  • Grodzicker, T., Arditti, R.R., Eisen, H.: Establishment of repression by lambdoid phage in catabolite activator protein and adenylate cyclase mutant of Escherichia coli. Proc. Natl. Acad. Sci. (Wash.) 69, 366–370 (1972)

    Google Scholar 

  • Hampacherová, M., Kontecká, E., Neubauer, Z.: Two repressors in bacteriophage lambda. Molec. gen. Genet. 120, 133–137 (1973)

    Google Scholar 

  • Harris, A.W., Mount, D.W.A., Fuerst, C.R., Siminovitch, L.: Mutations in bacteriophage lambda affecting host cell lysis. Virology 32, 553–569 (1967)

    Google Scholar 

  • Hong, J.S., Smith, G.R., Ames, B.N.: Adenosine 3′–5′ cyclic monophosphate concentration in the bacterial host regulates the viral decision between lysogeny and lysis. Proc. Nat. Acad. Sci. (Wash.) 68, 2258–2262 (1971)

    Google Scholar 

  • Joyner, A., Isaacs, L.N., Echols, H., Sly, W.S.: DNA replication and messenger RNA production after induction of wild-type λ bacteriophage and mutants. J. Molec. Biol. 19, 174–186 (1966)

    Google Scholar 

  • Kaiser, A.D.: Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli. Virology 3, 42–61 (1957)

    Google Scholar 

  • Kourilsky, P.: Lysogenization by bacteriophage lambda I. Multiple infection and the lysogenic reponse. Molec. gen. Genet. 122, 183–195 (1973)

    Google Scholar 

  • Kumar, S., Calef, E., Szybalski, W.: Regulation of the transcription of Escherichia coli phage λ by its early gene N and tof. Cold Spr. Harb. Symp. Quant. Biol. 35, 331–340 (1970)

    Google Scholar 

  • Lederberg, J.: The β-D-galactosidase of Escherichia coli, strain K-12. J. Bact. 60, 381–392 (1950)

    Google Scholar 

  • Lieb, M.: The establishment of lysogenicity in Escherichia coli. J. Bact. 65, 642–651 (1953)

    Google Scholar 

  • Mark, K.K.: The relationship between the synthesis of DNA and the synthesis of phage lysozyme in Escherichia coli infected by bacteriophage T4. Virology 42, 20–27 (1970a)

    Google Scholar 

  • Mark, K.K.: A lysozyme assay method for low activity. Anal. Biochem. 37, 447–450 (1970b)

    Google Scholar 

  • Mark, K.K., Chen, I.: Correlation between the reduction of phage lysozyme level and the time of lysis in Escherichia coli infected by bacteriophage T4. Biochem. Biophys. Res. Commun. 46, 1102–1105 (1972)

    Google Scholar 

  • McMacken, R., Mantei, N., Butler, B., Joyner, A., Echols, H.: Effect of mutations on the cII and cIII genes of bacteriophage λ on macromolecular synthesis in infected cells. J. Molec. Biol. 49, 639–655 (1970)

    Google Scholar 

  • Monod, J., Cohen-Bazine, G., Cohen, M.: Sur la biosynthèse de la β-galactosidase (lactase chez Escherichia coli la spécificité de l'induction). Biochim. Biophys. Acta 7, 585 (1951)

    Google Scholar 

  • Ogawa, T., Tomizawa, J.: Replication of bacteriophage RNA I. Replication of DNA of lambda phage defective in early functions. J. Molec. Biol. 38, 217–225 (1968)

    Google Scholar 

  • Oppenheim, A.B., Neubauer, Z., Calef, E.: The anti-repressor: A new element in the regulation of protein synthesis. Nature (London) 226, 31 (1970)

    Google Scholar 

  • Pearson, M.L.: The role of adenosine 3′–5′ cyclic monophosphate in growth of bacteriophage lambda. Virology 49, 605–609 (1972)

    Google Scholar 

  • Puck, T.T., Lee, H.H.: Mechanism of cell wall penetration by viruses I. An increase in host cell permeability induced by bacteriophage infection. J. Exptl. Med. 99, 481–494 (1954)

    Google Scholar 

  • Puck, T.T., Lee, H.H.: Mechanism of cell wall penetration by viruses II. Demonstration of cyclic permeability change accompanying virus infection of Escherichia coli B cells. J. Exptl. Med. 101, 151–175 (1955)

    Google Scholar 

  • Reichardt, L.: Control of bacteriophage lambda repressor synthesis after phage infection: The role of the N, cII, cIII and cro products. J. Molec. Biol. 93, 267–288 (1975a)

    Google Scholar 

  • Reichardt, L.: Control of bacteriophage lambda repressor synthesis: Regulation of the maintenance pathway by the cro and cI products. J. Molec. Biol. 93, 289–309 (1975b)

    Google Scholar 

  • Reichardt, L., Kaiser, A.D.: Control of λ repressor synthesis. Proc. Nat. Acad. Sci. (Wash.) 68, 2185–2189 (1971)

    Google Scholar 

  • Sly, W.S., Rabideau, K., Kolber, A.: The mechanism of lambda virulence II. Regulatory mutations in classical virulence. In: The Bacteriophage Lambda (A.D. Hershey, ed.), Cold Spring Harbor Laboratory, New York, pp. 575–588 (1971)

    Google Scholar 

  • Spiegelman, W.G.: Two states of espression of genes cI, rex, and N in lambda. Virology 43, 16–33 (1971)

    Google Scholar 

  • Stevens, W.F., Adhya, S., Szybalski, W.: Origin and bidirectional orientation of DNA replication in coliphage lambda. In: The Bacteriophage Lambda (A.D. Hershey, ed.). Cold Spring Harbor Laboratory, p. 515–533 (1971)

  • Strack, H.B., Ziegler, R.: A new class of clear mutants from coliphage 434 by not complementing cII and cIII mutants for lysogenization. Molec. gen. Genet. 106, 80–88 (1969)

    Google Scholar 

  • Szybalski, W.: Controls of transcription and replication in coliphage lambda. Karl-August-Forster-Lectures, Akad. Wiss. Literat., Mathem. Naturwiss, Klasse, Mainz. 6, 9 Wiesbaden: F. Steiner Verlag 1971

    Google Scholar 

  • Szybalski, W., Bøvre, K., Fiandt, M., Guha, A., Hradecna, Z., Kumar, S., Lozeron, H.A., Maher, V.M., Nijkamp, H.J.J., Summers, W.C., Taylor, K.: Transcriptional controls in developing bacteriophage. J. Cell Physiol. 74 Suppl. 1, 33–70 (1969)

    Google Scholar 

  • Szybalski, W., Bøvre, K., Fiandt, M., Hayes, S., Hradecna, Z., Kumar, S., Lozeron, H.A., Nijkamp, H.J.J., Stevens, W.F.: Transcriptional units and their controls in Escherichia coli phage λ: Operons and scriptons. Cold Spr. Harb. Symp. Quart. Biol. 35, 341–353 (1970)

    Google Scholar 

  • Taylor, A.: The endopeptidase activity of phage endolysin. Nature New Biology 234, 144–145 (1971)

    Google Scholar 

  • Yamamoto, K.R., Alberts, B.M.: Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40, 734–744 (1970)

    Google Scholar 

  • Young, E.T., Sinsheimer, R.L.: Vegetative bacteriophage λ DNA II. Physical characterization and replication. J. Molec. Biol. 30, 165–200 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Bertani

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsui, Lc., Mark, Kk. The depression of endolysin synthesis in bacteria infected with high multiplicities of phage λ. Molec. Gen. Genet. 143, 269–278 (1976). https://doi.org/10.1007/BF00269403

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00269403

Keywords

Navigation