Skip to main content
Log in

The size of transcriptional units for ribosomal proteins in Escherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

An analysis of the degree to which the 55 ribosomal protein genes are clustered in polycistronic transcriptional units in E. coli is presented. Three kinetic approaches were applied:

  1. a)

    The labeling kinetics of RNA at different times after addition of rifampicin to a culture of E. coli growing in glucose minimal medium was used to calculate the distribution of transcribing RNA polymerases over different size classes of mRNA operons. The average length of transcriptional units being transcribed at a given time is about 3300 base pairs. Less than 1% of mRNA synthesis originates from transcriptional units longer than 12000 base pairs and only about 10% from units longer than 7500 base pairs. From this the upper limit of the length of ribosomal protein operons can be estimated.

  2. b)

    The rate of ribosomal protein synthesis as a fraction of the rate of total protein synthesis (αr) was measured during the cessation of mRNA synthesis and its decay after rifampicin addition. αr appears to decrease from 0.125 to 0.09 indicating that probably most ribosomal protein transcriptional units are shorter than the average.

  3. c)

    The kinetics of the rates of synthesis of individual ribosomal proteins was analysed after the release of the inhibition by rifampicin in a partially rifampicin resistant strain at 40°C. The rates of synthesis for all of the 40 ribosomal proteins tested reach half their final values at times falling in the interval 1.4–3.5 min, though for the majority it was reached between 1.6–2.6 min.

We conclude that in E. coli the ribosomal protein genes are not joined to one extraordinarily long transcriptional unit but rather that there exist several small transcriptional units comprising up to 10 ribosomal protein genes each and that there may be one larger unit containing as many as 20 cistrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, P. M., Maaløe, O.: The effects of fusidic acid on growth, ribosome synthesis and RNA metabolism in Escherichia coli. Submitted to J. molec. Biol. (1974)

  • Bollen, A., Faelen, M., Lecocq, J. P., Herzog, A., Zengel, J., Kahan, L., Nomura, M.: The structural gene for the ribosomal protein S18 in Escherichia coli. I. Genetic studies on a mutant having an alteration in the protein S18. J. molec. Biol. 76, 473–483 (1973)

    Google Scholar 

  • Bremer, H., Yuan, D.: RNA chain growth rate in Escherichia coli. J. molec. Biol. 38, 163–180 (1968)

    Google Scholar 

  • Davies, J., Nomura, M.: The genetics of bacterial ribosomes. Ann. rev. Gen. 6, 203–234 (1972)

    Google Scholar 

  • Dennis, P. P., Bremer, H.: Regulation of ribonucleic acid synthesis in E. coli B/r: An analysis of a shift-up. 1. Ribosomal RNA chain growth rates. J. molec. Biol. 75, 145–159 (1973)

    Google Scholar 

  • Doolittle, W. F., Pace, N. R.: Synthesis of 5S ribosomal RNA in Escherichia coli after rifampicin treatment. Nature (Lond.) 228, 125–129 (1970)

    Google Scholar 

  • Dzionara, M., Kaltschmidt, E., Wittmann, H. G.: Ribosomal proteins XIII: Molecular weights of isolated ribosomal proteins of Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 67, 1909–1913 (1970)

    Google Scholar 

  • Ecker, R. R., Schaechter, M.: Ribosome content and the rate of growth of Salmonella typhimurium. Biochim. biophys. Acta (Amst.) 76, 275–279 (1963)

    Google Scholar 

  • Flessel, C. P.: The cell-free synthesis of ribosomal proteins on small polysomes. Biochim. biophys. Acta (Amst.) 209, 587–588 (1970)

    Google Scholar 

  • Gupta, R. S., Singh, U. N.: Biogenesis of ribosomes: Free ribosomal protein pools in Escherichia coli. J. molec. Biol. 69, 279–301 (1972)

    Google Scholar 

  • Kaltschmidt, E., Wittmann, H. G.: Ribosomal proteins VII. Two-dimensional-polyacrylamide gel electrophoresis for fingerprinting of ribosomal proteins. Analyt. Biochem. 36, 401 (1970a)

    Google Scholar 

  • Kaltschmidt, E., Wittmann, H. G.: Ribosomal proteins XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. Proc. nat. Acad. Sci. (Wash.) 67, 1276–1282 (1970b)

    Google Scholar 

  • Kaplan, S.: In vivo translation of ambre and ochre codons in Escherichia coli. Molec. gen. Genet. 120, 191–200 (1973)

    Google Scholar 

  • Kossman, C. R., Stamato, T. D., Pettijohn, D. E.: Tandem synthesis of the 16 S and 23 S ribosomal RNA sequences of Escherichia coli. Nature (Lond.) New Biol. 234, 102–104 (1971)

    Google Scholar 

  • Lindahl, L., Forchhammer, J.: Evidence for reduced breakdown of messenger RNA during blocked transcription or translation in Escherichia coli. J. molec. Biol. 43, 593–606 (1969)

    Google Scholar 

  • Maaløe, O.: An analysis of bacterial growth. Develop. Biol., Suppl. 3, 33–58 (1969)

  • Maaløe, O., Kjeldgaard, N. O.: Control of macromolecular synthesis. New York-Amsterdam: W. A. Benjamin 1966

    Google Scholar 

  • Matzura, H., Molin, S., Maaløe, O.: Sequential biosynthesis of the β and β′ subunits of the DNA-dependent RNA polymerase from Escherichia coli. J. molec. Biol. 59, 17–25 (1971)

    Google Scholar 

  • Nomura, M.: Bacterial ribosome. Bact. Rev. 34, 228–277 (1970)

    Google Scholar 

  • Nomura, M., Engbaek, F.: Expression of ribosomal protein genes as analyzed by bacteriophage Mu-induced mutations. Proc. nat. Acad. Sci. (Wash.) 69, 1526–1530 (1972)

    Google Scholar 

  • Norris, T. E., Koch, A. L.: Effect of growth rate on the relative rates of synthesis of messenger, ribosomal and transfer RNA in Escherichia coli. J. molec. Biol. 64, 633–649 (1972)

    Google Scholar 

  • Pato, M. L., Bennett, P., Meyenburg, K. v.: Messenger RNA synthesis and degradation in Escherichia coli during inhibition of translation. J. Bact. 116, 710–718 (1973)

    Google Scholar 

  • Pato, M. L., Meyenburg, K. v.: Residual RNA synthesis in Escherichia coli after inhibition of initiation of transcription by rifampicin. Cold Spr. Harb. Symp. quant. Biol. 35, 497–504 (1970)

    Google Scholar 

  • Raymond, S.: Acrylamide gel electrophoresis. Ann. N.Y. Acad. Sci. 121, 350–365 (1964)

    Google Scholar 

  • Rose, J. K., Mosteller, R. D., Yanofsky, C.: Tryptophan messenger ribonucleic acid elongation rates and steady-state levels of tryptophan operon enzymes under various growth conditions. J. molec. Biol. 51, 541–550 (1970)

    Google Scholar 

  • Schaechter, M., Maaløe, O., Kjeldgaard, N. O.: Dependency on medium and temperature of cell size and chemical composition during balanced growth of Salmonella typhimurium. J. gen. Microbiol. 19, 592–606 (1958)

    Google Scholar 

  • Schleif, R.: Control of production of ribosomal protein. J. molec. Biol. 27, 41–55 (1967)

    Google Scholar 

  • Sekiguchi, M., Iida, S.: Mutants of E. coli permeable to actinomycin. Proc. nat. Acad. Sci. (Wash.) 58, 2315–2320 (1967)

    Google Scholar 

  • Takata, R.: Genetic studies of the ribosomal proteins in Escherichia coli. VIII Mapping of ribosomal protein components by intergeneric mating experiments between Serratia marcescens and Escherichia coli. Molec. gen. Genet. 118, 363–371 (1972)

    Google Scholar 

  • Taylor, A. L., Trotter, C. D.: Linkage map of Escherichia coli strain K12. Bact. Rev. 36, 504–524 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. G. Wittmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molin, S., von Meyenburg, K., Gulløv, K. et al. The size of transcriptional units for ribosomal proteins in Escherichia coli . Molec. Gen. Genet. 129, 11–26 (1974). https://doi.org/10.1007/BF00269262

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00269262

Keywords

Navigation