Skip to main content
Log in

GABA transminase provides an alternative route of β-alanine synthesis in Aspergillus nidulans

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Three unlinked genes where mutation can lead to D(+)-pantothenic acid auxotrophy in Aspergillus nidulans have been identified. pantoA is probably the structural gene for pantothenate synthetase (EC 6.3.2.1) whilst pantoB and pantoC are involved in the syntheses of D-pantoic acid and β-alanine, respectively. A pantoC mutant is tentatively considered to be bloaked in conversion of 5,6-dihydrouracil to β-ureidopropionate. An alternative route of β-alanine biosynthesis occurs by the transamination of malonic semialdehyde, catalysed by GABA transaminase. The possibility that β-alanine can be replaced by certain structurally related compounds and yet nevertheless yield biologically active coenzyme A analogues is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arst, H.N., Jr.: Integrator gene in Aspergillus nidulans. Nature (Lond.) 262, 231–234 (1976)

    Google Scholar 

  • Arst, H.N., Jr.: Some genetical aspects of ornithine, metabolism in Aspergillus nidulans. Molec. gen. Genet. 151, 105–110 (1977a)

    Google Scholar 

  • Arst, H.N., Jr.: The basis for an apparent auxotrophy for reduced sulphur metabolites in sF mutants of Aspergillus nidulans. Genet. Res. 30, 207–210 (1977b)

    Google Scholar 

  • Arst, H.N., Jr., Bailey, C.R.: The regulation of carbon metabolism in Aspergillus nidulans. In: Genetics and physiology, of Aspergillus (J.E. Smith and J.A. Pateman, eds.), pp. 131–146. London: Academic Press 1977

    Google Scholar 

  • Arst, H.N., Jr., Cove, D.J.: Methylammonium resistance in Aspergillus nidulans. J. Bact. 98, 1284–1293 (1969)

    Google Scholar 

  • Arst, H.N., Jr., Cove, D.J.: Nitrogen metabolite repression in Aspergillus nidulans. Molec. gen. Genet. 126, 111–141 (1973)

    Google Scholar 

  • Arst, H.N., Jr., MacDonald, D.W.: A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature (Lond.) 254, 26–31 (1975)

    Google Scholar 

  • Asen, S., Thompson, J.F., Morris, C.J., Irreverre, F.: Isolation of β-aminoisobutyric acid from bulbs of Iris tingitana var. Wedgewood. J. biol. Chem. 234, 343–346 (1959)

    Google Scholar 

  • Bal, J., Kajtaniak, E.M., Pieniazek, N.J.: 4-nitroquinoline-1-oxide: a good mutagen for Aspergillus nidulans. Mutation Res. 56, 153–156 (1977)

    Google Scholar 

  • Britten, R.J., Davidson, E.H.: Gene regulation for higher cells: a theory. Science 165, 349–357 (1969)

    Google Scholar 

  • Clutterbuck, A.J.: Aspergillus nidulans. In: Handbook of genetics, Vol. I, pp. 447–510. (R.C. King, ed.). New York: Plenum Press 1974

    Google Scholar 

  • Cove, D.J.: The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. biophys. Acta (Amst.) 113, 51–56 (1966)

    Google Scholar 

  • Hynes, M.J.: A cis-dominant regulatory mutation affecting enzyme induction in the eukaryote Aspergillus nidulans. Nature (Lond.) 253, 210–212 (1975)

    Google Scholar 

  • Käfer, E.: An 8-chromosome map of Aspergillus nidulans. Advanc. Genet. 9, 105–145 (1958)

    Google Scholar 

  • Käfer, E.: Origins of translocations in Aspergillus nidulans. Genetics 52, 217–232 (1965)

    Google Scholar 

  • Käfer, E.: Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Advanc. Genet. 19, 33–131 (1977)

    Google Scholar 

  • Kakimoto, Y., Armstrong, M.D.: The preparation and isolation of D-(-)-β-aminoisobutyric acid. J. biol. Chem. 236, 3282–3286 (1961)

    Google Scholar 

  • Maas, W.K., Davis, B.D.: Pantothenate studies. I. Interference by D-serine and L-aspartic acid with pantothenate synthesis in Escherichia coli. J. Bact. 60, 733–745 (1950)

    Google Scholar 

  • McCully, K.S., Forbes, E.: The use of p-fluorephenylalanine with “master strains” of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6, 352–359 (1965)

    Google Scholar 

  • Ortega, M.V., Cardenas, A., Ubiera, D.: panD, a new chromosomal locus of Salmonella typhimurium for the biosynthesis of β-alanine. Molec. gen. Genet. 140, 159–164 (1975)

    Google Scholar 

  • Penfold, H.A., Bailey, C.R., Arst, H.N., Jr.: An integrator gene in Aspergillus nidulans: regulatory and metabolic roles of ω-amino acids. Heredity 39, 433 (1977)

    Google Scholar 

  • Pontecorvo, G., Roper, J.A., Hemmons, L.A., Macdonald, K.D., Bufton, A.W.J.: The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953)

    Google Scholar 

  • Rever, B.M.: Biochemical and genetical studies of inorganic nitrogen metabolism in Aspergillus nidulans. Ph. D. Thesis, University of Cambridge (1965)

  • Slotnick, I.J.: Dihydrouracil as a growth factor for a mutant strain of Escherichia coli. J. Bact. 72, 276–277 (1956)

    Google Scholar 

  • Slotnick, I.J., Weinfeld, H.: Dihydrouracil as a growth factor for mutant strains of Escherichia coli. J. Bact. 74, 122–125 (1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arst, H.N. GABA transminase provides an alternative route of β-alanine synthesis in Aspergillus nidulans . Molec. Gen. Genet. 163, 23–27 (1978). https://doi.org/10.1007/BF00268960

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268960

Keywords

Navigation