Skip to main content
Log in

Identification of three 30S proteins contributing to the ribosomal A site

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

When 30S ribosomal subunits from E. coli are incubated with unfractionated 30S protein, the protein synthetic activity of the ribosomes is enhanced. Part of this effect is due to the stimulation of mRNA binding by S1 (Van Duin and Kurland, 1970). In addition, three other proteins (S2, S3 and S14) increase the number of tRNA binding sites. The enhancing effect of S2, S3 and S14 on the tRNA binding capacity of the ribosomes is seen both in the presence and absence of T factor. S2, S3 and S14 do not seem to stimulate mRNA binding. The aminoacyl-tRNA bound in response to S2, S3 and S14 is associated with the 70S ribosome and it can donate amino acid residues for polypeptide synthesis. We conclude that S2, S3 and S14 are part of the 30S A site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Birge, E. A., Kurland, C. G.: Altered ribosomal protein in streptomycin-dependent Escherichia coli. Science 166, 1282–1284 (1969).

    Google Scholar 

  • Birge, E. A., Kurland, C. G.: Reversion of a streptomycin-dependent strain of Escherichia coli. Molec. Gen. Genet. 109, 356–369 (1970).

    Google Scholar 

  • Craven, G. R., Gavin, R., Fanning, T.: The transfer RNA binding site of the 30S ribosome and the site of tetracycline inhibition. Cold Spr. Harb. Symp. quant. Biol. 24, 129–137 (1969a).

    Google Scholar 

  • Craven, G. R., Voynow, P., Hardy, S. J. S., Kurland, C. G.: Ribosomal proteins of E. coli. II. Chemical and physical characterization of 30S proteins. Biochemistry (Wash.) 8, 2906–2915 (1969b).

    Google Scholar 

  • Davies, J., Gilbert, W., Gorini, L.: Studies on the ribosomes of streptomycin sensitive and resistant strains of Escherichia coli. Proc. nat. Acad. Sci (Wash.) 51, 659–664 (1964).

    Google Scholar 

  • Deusser, E., Stöffler, G., Wittmann, H. G., Apirion, D.: Ribosomal proteins. XVI. Altered S4 proteins in Escherichia coli revertants from streptomycin dependence to independence. Molec. Gen. Genet. 109, 298–302 (1970).

    Google Scholar 

  • Donner, D., Kurland, C. G.: Changes in the primary structure of a mutationally altered ribosomal protein. Molec. gen. Genet. in press (1971).

  • Duin, J. van, Kurland, C. G.: Functional heterogeneity of the 30S ribosomal subunit of E. coli. Molec. Gen. Genet. 109, 169–176 (1970).

    Google Scholar 

  • Fanning, T.: Chemical modification of the Escherichia coli 30S subunit. pH d thesis. University of Wisconsin, Madison, Wisconsin, U.S.A. (1971).

  • Gorini, L., Kataja, E.: Phenotypic repair by streptomycin of defective genotypes in E. coli. Proc. nat. Acad. Sci. (Wash.) 51, 487–493 (1964).

    Google Scholar 

  • Hardy, S. J. S., Kurland, C. G., Voynow, P., Mora, G.: The ribosomal proteins of E. coli. I. Purification of the 30S proteins. Biochemistry 8, 2897–2905 (1969).

    Google Scholar 

  • Kurland, C. G.: The requirements for specific sRNA binding by ribosomes. J. molec. Biol. 18, 90–108 (1966).

    Google Scholar 

  • Kurland, C. G., Voynow, P., Hardy, S. J. S., Randall, L., Lutter, L.: Physical and functional heterogeneity of E. coli ribosomes. Cold Spr. Harb. Symp. quant. Biol. 34, 17–24 (1969).

    Google Scholar 

  • Lucas-Lenard, J., Lipmann, F.: Protein biosynthesis. Ann. Rev. Biochem. 40, 409–448 (1971).

    Google Scholar 

  • Nirenberg, M., Leder, P.: RNA codewords and protein synthesis. Science 145, 1399–1407 (1964).

    Google Scholar 

  • Nomura, M., Mizushima, S., Ozaki, M., Traub, P., Lowry, C. V.: Structure and function of ribosomes and their molecular components. Cold Spr. Harb. Symp. quant. Biol. 34, 49–61 (1969).

    Google Scholar 

  • Ozaki, M., Mizushima, S., Nomura, M.: Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature (Lond.) 222, 333–339 (1969).

    Google Scholar 

  • Randall-Hazelbauer, L. L.: Enhancement of Escherichia coli ribosomal function in vitro. pH d thesis. University of Wisconsin, Madison, Wisconsin, U.S.A. (1971).

  • Rosset, R., Gorini, L.: A ribosomal ambiguity mutation. J. molec. Biol. 39, 95–112 (1969).

    Google Scholar 

  • Shorey, R. L., Ravel, J. M., Garner, C. W., Shive, W.: Formation and properties of the aminoacyl transfer ribonucleic acid-guanosine triphosphate-protein complex. J. biol. Chem. 244, 4555–4564 (1969).

    Google Scholar 

  • Traub, P., Nomura, M.: Structure and function of E. coli ribosomes. V. Reconstitution of functionally active 30S ribosomal particles from RNA and proteins. Proc. nat. Acad. Sci. (Wash.) 59, 777–784 (1968).

    Google Scholar 

  • Voynow, P., Kurland, C. G.: Stoichiometry of the 30S ribosomal proteins of Escherichia coli. Biochemistry 10, 517–524 (1971).

    Google Scholar 

  • Zimmerman, R. A., Garvin, R. T., Gorini, L.: Alteration of a 30S ribosomal protein accompanying the ram mutation in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 68, 2263–2267 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. G. Wittmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randall-Hazelbauer, L.L., Kurland, C.G. Identification of three 30S proteins contributing to the ribosomal A site. Molec. Gen. Genet. 115, 234–242 (1972). https://doi.org/10.1007/BF00268887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268887

Keywords

Navigation