Skip to main content
Log in

Evidence for a common component in kinetically distinct transport systems of Saccharomyces cerevisiae

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Two lines of evidence suggest that amino acid transport systems and the methylamine/ammonia transport system of Saccharomyces cerevisiae may share a common component or components.

  1. 1.

    Mutant strains have been derived which are defective in transport activity for methylamine and for amino acids. A single pleiotropic mutation appears to be responsible for the observed reduction in the various transport activities.

  2. 2.

    Transport systems for amino acids and for methylamine are sensitive to a similar degree to inhibition by proton conducting uncouplers, ATPase inhibitors, and ionophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Crabeel, M., Grenson, M.: Regulation of histidine uptake by specific feedback inhibition of two histidine permeases in Saccharomyces cerevisiae. Europ. J. Biochem. 14, 197–204 (1970)

    Google Scholar 

  • Doudoroff, M., Hassid, W.Z., Putnam, E.W., Potter, A.L., Lederberg, J.: Direct utilization of maltose by Escherichia coli. J. biol. Chem. 179, 921–934 (1949)

    Google Scholar 

  • Eddy, A.A., Nowacki, J.A.: Stoichiometrical proton and potassium ion movements accompanying the absorption of amino acids by the yeast Saccharomyces carlsbergensis. Biochem. J. 122, 701–711 (1971)

    Google Scholar 

  • Egan, J.B., Morse, M.L.: Carbohydrate transport in Staphylococcus aureus. I. Genetic and biochemical analysis of a pleiotropic transport mutant. Biochim. Biophys. Acta (Amst.) 97, 310–319 (1965a)

    Google Scholar 

  • Egan, J.B., Morse, M.L.: Carbohydrate transport in Staphylococcus aureus. II. Characterization of the defect of a pleiotropic transport mutant. Biochim. biophys. Acta (Amst.) 109, 172–183 (1965b)

    Google Scholar 

  • Egan, J.B., Morse, M.L.: Carbohydrate transport in Staphylococcus aureus. III. Studies of the transport process. Biochim. biophys. Acta (Amst.) 117, 63–73 (1966)

    Google Scholar 

  • Gits, J., Grenson, M.: Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. III. Evidence for a specific methionine-transporting system. Biochim. biophys. Acta (Amst.) 135, 507–516 (1967)

    Google Scholar 

  • Grenson, M.: Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochim. biophys. Acta (Amst.) 127, 339–346 (1966)

    Google Scholar 

  • Grenson, M., Hennant, C.: Mutation affecting activity of several distinct amino acid transport systems in Saccharomyces cerevisiae. J. Bact. 105, 477–482 (1971)

    Google Scholar 

  • Grenson, M., Hou, C.: Ammonia inhibition of the general amino acid permease and its suppression in NADPH-specific glutamate dehydrogenaseless mutants of Saccharomyces cerevisiae. Biochem. biophys. Res. Commun. 48, 749–756 (1972)

    Google Scholar 

  • Grenson, M., Hou, C., Crabeel, M.: Multiplicity of amino acid permeases in Saccharomyces cerevisiae. IV. Evidence for a general amino acid permease. J. Bact. 103, 770–777 (1970)

    Google Scholar 

  • Grenson, M., Mousset, M., Wiame, J.M., Bechet, J.: Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim. biophys. Acta (Amst.) 127, 325–338 (1966)

    Google Scholar 

  • Hawthorne, D.C., Mortimer, R.J.: Chromosome mapping of Saccharomyces cerevisiae: centromere-linked genes. Genetics 45, 1085–1110 (1960)

    Google Scholar 

  • Hengstenberg, W., Penberthy, W.K., Hill, K.L., Morse, M.L.: Phosphotransferase system of Staphylococcus aureus: its requirement for the accumulation and metabolism of galactosides. J. Bact. 99, 383–388 (1969)

    Google Scholar 

  • Jacobsen, E.S., Metzenberg, A.L.: A new gene which affects uptake of neutral and acidic amino acids in Neurospora crassa. Biochim. biophys. Acta (Amst.) 156, 140–147 (1969)

    Google Scholar 

  • Joiris, C.R., Grenson, M.: Spécificité at régulation d'une per méase des acides aminés dicarboxyliques chez Saccharomyces cerevisiae. Arch. int. Physiol. Biochem. 77, 154–156 (1969)

    Google Scholar 

  • Kappy, M.S., Metzenberg, R.L.: Multiple alterations in metabolite uptake in a mutant of Neurospora crassa. J. Bact. 94, 1629–1637 (1967)

    Google Scholar 

  • Kinsey, J.A., Stadler, D.A.: Interaction between analogue resistance and amino acid auxotrophy in Neurospora. J. Bact. 97, 1114–1117 (1969)

    Google Scholar 

  • Nell, J.H., De Busk, A.G.: Amino acid transport during development of Neurospora crassa conidia: substrate repression. Biochem. Genet. 11, 183–203 (1974)

    Google Scholar 

  • Rao, T.K., De Busk, A.G.: Characteristics of a transport-deficient mutant (nap) of Neurospora crassa. Biochim. biophys. Acta (Amst.) 323, 619–626 (1973)

    Google Scholar 

  • Roon, R., Even, H.L., Dunlop, P., Larimore, F.: Methylamine and ammonia transport in Saccharomyces cerevisiae. J. Bact. 122, 502–509 (1975b)

    Google Scholar 

  • Roon, R.J., Larimore, F., Levy, J.S.: Inhibition of amino acid transport by ammonium ion in Saccharomyces cerevisiae. J. Bact. 124, 325–331 (1975a)

    Google Scholar 

  • Roon, R.J., Levy, J.S., Larimore, F.: Negative interactions between the amino acid and methylamine/ammonia transport systems of Saccharomyces cerevisiae. J. biol. Chem. 252, 3599–3604 (1977)

    Google Scholar 

  • Rytka, J.: Positive selection of general amino acid permease mutants in Saccharomyces cerevisiae. J. Bact. 121, 562–570 (1975)

    Google Scholar 

  • Sanchez, S., Martinex, L., Mora, J.: Interactions between amino acid transport systems in Neurospora crassa. J. Bact. 112, 276–284 (1972)

    Google Scholar 

  • Schwencke, J., Magana-Schwencke, N.: Derepression of a proline transport system in Saccharomyces chevalieri by nitrogen starvation. Biochim. biophys. Acta (Amst.) 173, 302–312 (1969)

    Google Scholar 

  • Simoni, R.D., Levinthal, M., Kundig, F.D., Kundig, W., Anderson, B., Hartman, P.E., Roseman, S.: Genetic evidence for the role of a bacterial phosphotransferase system in sugar transport. Proc. nat. Acad. Sci. (Wash.) 58, 1963–1970 (1967)

    Google Scholar 

  • Simoni, R.D., Smith, M.F., Roseman, S.: Resolution of a staphylococcal phosphotransferase system into four protein components and its relation to sugar transport. Biochem. biophys. Res. Commun. 31, 804–811 (1968)

    Google Scholar 

  • Surdin, Y., Sly, W., Sire, J., Bordes, A.M., deRobichon-Szulmajster, H.: Propiétés et controle ǵenétique de système d'accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim. biophys. Acta (Amst.) 107, 546–566 (1965)

    Google Scholar 

  • Tanaka, S., Fraenkel, D.G., Lin, E.C.C.: The enzymatic lesion of strain MM-6, a pleiotropic carbohydrate-negative mutant of Escherichia coli. Biochem. biophys. Res. Commun. 27, 63–67 (1967)

    Google Scholar 

  • Wang, J., Morse, M.L.: Carbohydrate accumulation and metabolism in Escherichia coli. I. Description of pleiotropic mutants. J. molec. Biol. 32, 59–66 (1963)

    Google Scholar 

  • Wiame, J.M.: Metabolism and cellular processes, Part II. In: Proc. Third Int. Specialized Symp. on Yeast (H. Suomalainen and C. Waller, eds.), pp. 307–330. Helsinki: 1973

  • Wolfinbarger, L., Jr., Marzluf, G.A.: Peptide utilization by amino acid auxotrophs of Neurospora. J. Bact. 119, 371–378 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Kaudewitz

This work was supported in part by Research Grant GM 23135 from the National Institute of General Medical Sciences

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roon, R.J., Meyer, G.M. & Larimore, F.S. Evidence for a common component in kinetically distinct transport systems of Saccharomyces cerevisiae . Molec. Gen. Genet. 158, 185–191 (1977). https://doi.org/10.1007/BF00268312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00268312

Keywords

Navigation