Advertisement

Molecular and General Genetics MGG

, Volume 146, Issue 2, pp 139–145 | Cite as

Multiple regulation of nucleoside catabolizing enzymes: Effects of a polar dra mutation on the deo enzymes

  • Hanne Albrechtsen
  • Karin Hammer-Jespersen
  • Agnete Munch-Petersen
  • Niels Fiil
Article

Summary

Strains with an amber, polar mutation in the dra1 gene have been isolated. The mutation was introduced into a set of isogenic strains, wild type or with concurrent regulatory mutations, and further characterized by suppression and heat inactivation experiments.

The effect of the polar dra mutation on the three remaining genes of the deo operon, the tpp, drm and pup genes, was determined by estimating the enzyme levels in the various dra-mutants. The effect was found to be non-coordinate, indicating the formation in the cells of two types of transcripts: A tetracistronic unit, containing the message from all four genes, and a dicistronic unit, covering the two distal genes only.

Keywords

Enzyme Nucleoside Enzyme Level Distal Gene Multiple Regulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, S.I., Pritchard, R.H.: A map of four genes specifying enzymes involved in catabolism of nucleosides and deoxynucleosides in Escherichia coli. Molec. gen. Genet. 104, 351–356 (1969)Google Scholar
  2. Ahmad, S.I., Pritchard, R.H.: A regulatory mutant affecting the synthesis of enzymes involved in the catabolism of nucleosides in Escherichia coli. Molec. gen. Genet. 111, 77–83 (1971)Google Scholar
  3. Ahmad, S.I., Pritchard, R.H.: An operator constitutive mutant affecting the synthesis of two enzymes involved in the catabolism of nucleosides in Escherichia coli. Molec. gen. Genet. 124, 321–329 (1973)Google Scholar
  4. Baumanis, G.E., Smirnov, Yu, V., Sukhodoletz, V.V.: Production and study of polar mutants for nucleoside catabolism linked genes in Escherichia coli. Genetika 5, 81–88 (1974)Google Scholar
  5. Bonney, R.J., Weinfeld, H.: Regulation of thymidine metabolism in Escherichia coli K-12: Studies on the inducer and the coordinateness of induction of the enzymes. J. Bact. 106, 812–818 (1971)Google Scholar
  6. Breitman, T.R., Bradford, R.M.: The absence of deoxyriboaldolase activity in a thymineless mutant of Escherichia coli strain 15: A possible explanation for the low thymine requirement of some thyminelless strains. Biochim. biophys. Acta (Amst.) 138, 217–220 (1967)Google Scholar
  7. Buxton, R.S.: A genetic analysis of thymidine-resistant and lowthymine requiring mutants of Escherichia coli K12 induced by bacteriophage Mu-1. J. Bact. 121, 475–484 (1975)Google Scholar
  8. Hammer-Jespersen, K., Munch-Petersen, A.: Phosphodeoxyribomutase from Escherichia coli: Purification and some Properties. Europ. J. Biochem. 17, 397–407 (1970)Google Scholar
  9. Hammer-Jespersen, K., Munch-Petersen, A.: Multiple regulation of nucleoside catabolizing enzymes: Regulation of the deo operon by the cytR and deoR gene products. Molec. gen. Genet. 137, 327–335 (1975)Google Scholar
  10. Hammer-Jespersen, K., Munch-Petersen, A., Nygaard, P., Schwartz, M.: Induction of enzymes involved in the catabolism of deocyribonucleosides and ribonucleosides in Escherichia coli K12. Euron. J. Biochem. 19, 533–538 (1971)Google Scholar
  11. Hoffee, P.A.: 2-deoxyribose gene-enzyme complex in Salmonella typhimurium. I. Isolation and enzymatic characterisation of 2-deoxyribose-negative mutants. J. Bact. 95, 449 (1968a)Google Scholar
  12. Karlström, O.: Mutants of Escherichia coli defective in ribonucleoside and deoxyribonucleoside catabolism. J. Bact. 95, 1069–1077 (1968)Google Scholar
  13. Martin, R.G., Silbert, D.F., Smith, D.W.E., Whitfield, H.J.: Polarity in the histidine operon. J. molec. Biol. 21, 357–369 (1966)Google Scholar
  14. Miller, J.H.: Experiments in molecular genetics. New York: Cold Spring Harbor Laboratory 1972Google Scholar
  15. Monod, J., Cohen-Bazire, G., Cohn, M.: Sur la biosynthese de la beta-galactosidase (lactose) chez Escherichia coli. La specificité de l'induction. Biochim. biophys. Acta (Amst.) 7, 585–599 (1961)Google Scholar
  16. Munch-Petersen, A., Nygaard, P., Hammer-Jespersen, K., Fiil, N.: Mutants constitutive for nucleoside-catabolizing enzymes in Escherichia coli K12. Isolation, characterisation and mapping. Europ. J. Biochem. 27, 208–215 (1972)Google Scholar
  17. Svenningsen, B.: Regulated in vitro synthesis of the enzymes of the deo operon in Escherichia coli. Properties of the DNA directed system. Molec. gen. Genet. 137, 289–304 (1975)Google Scholar
  18. Yanofsky, C., Ito, J.: Nonsense codons and polarity in the tryptophan operon. J. molec. Biol. 21, 313–334 (1966)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Hanne Albrechtsen
    • 1
  • Karin Hammer-Jespersen
    • 1
  • Agnete Munch-Petersen
    • 1
  • Niels Fiil
    • 2
  1. 1.Institute of Biological Chemistry BUniversity of CopenhagenDenmark
  2. 2.Microbiological InstituteUniversity of CopenhagenDenmark

Personalised recommendations