Skip to main content
Log in

Regulation by cyclic AMP of the ilvB-encoded biosynthetic acetohydroxy acid synthase in Escherichia coli K-12

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The biosynthetic acetohydroxy acid synthase activities of E. coli K12 are encoded by three genetic loci namely, ilvB (acetohydroxy acid synthase I), ilvG (acetohydroxy acid synthase II) and ilvHI (acetohydroxy acid synthase III). The previously reported involvement of cyclic AMP in the regulation of the biosynthetic acetohydroxy acid synthase isozymes in E. coli K-12 was found to be due to the effect of this nucleotide on the expression of ilvB. Cyclic AMP had no effect on acetohydroxy acid synthase activity in strains lacking wild-type ilvB activity but containing the remaining isozymes. Very little activity of acetohydroxy acid synthase coded for by ilvB was found when ppGpp and cyclic AMP were severely limited. Addition of cyclic AMP under these conditions increased ilvB expression 24-fold. The data suggest that in addition to multivalent repression and ppGpp, cyclic AMP plays a major role in the regulation of the ilvB biosynthetic operon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alper, M.D., Ames, B.N.: Transport of antibiotics and metabolite analogs by systems under cyclic AMP control: positive selection of Salmonella typhimurium cya and crp mutants. J. Bacteriol. 133, 149–157 (1978)

    Google Scholar 

  • Block, R., Hazeltine, W.A.: In vitro synthesis of ppGpp and ppGpp. In: Ribosomes (M. Nomura, A. Tissieres and P. Lengyel, (eds.), pp. 747–761. New York: Cold Spring Harbor Laboratory 1974

    Google Scholar 

  • Cashel, M.: The control of ribonucleic acid synthesis in Escherichia coli. IV. Relevance of unusual phosphorylated compounds from amino acid-starved stringent strains. J. Biol. Chem. 244, 3133–3141 (1969)

    Google Scholar 

  • Coukell, M.B., Polglase, W.J.: Repression by glucose of acetohydroxy acid synthetase in Escherichia coli B. Biochem. J. 111, 273–278 (1969)

    Google Scholar 

  • Davis, B.D., Mingioli, E.S.: Mutants of Escherichia coli requiring methionine or vitamin B12: J. Bacteriol. 60, 17–80 (1950)

    Google Scholar 

  • DeFelice, M., Guardiola, J., Esposito, B., Iaccarino, M.: Structural genes for a newly recognized acetolactate synthase in Escherichia coli K-12. J. Bacteriol. 120, 1068–1077 (1974)

    Google Scholar 

  • DeFelice, M., Guardiola, J., Schreil, W., Levinthal, M., Iaccarino, M.: Metabolic interlock between the acetolactate synthase isoenzymes and lysine biosynthesis in Escherichia coli K-12. Mol. Gen. Genet. 156, 9–16 (1977)

    Google Scholar 

  • DeFeice, M., Levinthal, M.: The acetohydroxy acid synthase III isoenzyme of Escherichia coli K-12: regulation of synthesis by leucine. Biochem. Biophys. Res. Commun. 79, 82–87 (1977)

    Google Scholar 

  • DeFelice, M., Newman, T., Levinthal, M.: Regulation of the acetohydroxy acid synthase I isozyme in Escherichia coli K-12. Biochim. Biophys. Acta 541, 1–8 (1978)

    Google Scholar 

  • Freundlich, M., Burns, R.O., Umbarger, H. E.: Control of isoleucine, valine and leucine biosynthesis. I. Multivalent repression. Proc. Natl. Acad. Sci. U.S.A. 48, 1804–1808 (1967)

    Google Scholar 

  • Freundlich, M., Umbarger, H.E.: The effects of analogues of threonine and isoleucine on the properties of threonine deaminase. Cold Spring Harbor Symp. Quant. Biol. 28, 505–511 (1963)

    Google Scholar 

  • Freundlich, M.: Cyclic AMP can replace the relA-dependent requirement for derepression of acetohydroxy acid synthase in E. coli K-12. Cell 12, 1121–1126 (1977)

    Google Scholar 

  • Gorini, L., Gundersen, W.: Induction by arginine of enzymes of arginine biosynthesis in Escherichia coli B. Proc. Natl. Acad. Sci. U.S.A. 47, 961–971 (1961)

    Google Scholar 

  • Guardiola, J., DeFelice, M., Iaccarino, M.: Mutant of Escherichia coli K-12 missing acetolactate synthase activity. J. Bacteriol. 120, 536–538 (1974)

    Google Scholar 

  • Guardiola, J., DeFelice, M., Lamberti, A., Iaccarino, M.: The acetolactate synthase isoenzymes of Escherichia coli K-12. Mol. Gen. Genet. 156, 17–25 (1977)

    Google Scholar 

  • Halpern, Y.S., Umbarger, H.E.: Evidence for two distinct enzyme systems forming acetolactate in Aerobacter aerogenes. J. Biol. Chem. 234, 3067–3070 (1959)

    Google Scholar 

  • Iaccarino, M., Berg, P.: Isoleucine auxotrophy as a consequence of a mutationally altered isoleucyl-transfer ribonucleic acid synthetase. J. Bacteriol. 105, 527–537 (1971)

    Google Scholar 

  • Kelln, R.A., O'Donovan, G.A.: Isolation and partial characterization of an argR mutant of Salmonella typhimurium. J. Bacteriol. 128, 528–535 (1976)

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Malthe-Sorenssen, D., Stormer, F.C.: The pH 6 acetolactate-forming enzyme from Serratia marcescens. Eur. J. Biochem. 14, 127–132 (1970)

    Google Scholar 

  • Neidhardt, F.C., Eidlic, J.: Characterization of the RNA formed under conditions of relaxed amino acid control in Escherichia coli. Biochim. Biophys. Acta 68, 380–388 (1963)

    Google Scholar 

  • O'Neill, J.P., Freundlich, M.: Two forms of biosynthetic acetohydroxy acid synthetase in Salmonella typhimurium. Biochem. Biophys. Res. Commun. 48, 437–443 (1972)

    Google Scholar 

  • Pastan, I., Adhya, S.: Cyclic adenosine 5′ monophosphate in Escherichia coli. Bacteriol. Rev. 40, 527–551 (1976)

    Google Scholar 

  • Primakoff, P., Artz, S.W.: Positive control of the lac operon in vitro by guanosine 5′-diphosphate 3′-diphosphate. Proc. Natl. Acad. Sci. U.S.A. 76, 1726–1730 (1979)

    Google Scholar 

  • Ramakrishnan, T., Adelberg, E.A.: Regulatory mechanisms in the biosynthesis of isoleucine and valine. III. Map order of the structural genes and operator genes. J. Bacteriol. 89, 661–664 (1965)

    Google Scholar 

  • Rizzino, A.A., Bresalier, R.S., Freundlich, M.: Derepressed levels of the isoleucine-valine and leucine enzymes in hisT 1504, a strain of Salmonella typhimurium with altered leucine transfer ribonucleic acid. J. Bacteriol. 177, 449–455 (1974)

    Google Scholar 

  • Schleif, R.: Fine structure deletion map of the Escherichia coli L-arabinose operon. Proc. Natl. Acad. Sci. U.S.A. 69, 3479–3484 (1972)

    Google Scholar 

  • Stephens, J.C., Artz, S.W., Ames, B.N.: Guanosine 5′-diphosphate 3′-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino acid deficiency. Proc. Natl. Acad. Sci. U.S.A. 72, 4389–4393 (1975)

    Google Scholar 

  • Stormer, F.C., Umbarger, H.E.: The requirement for flavin adenine dinucleotide in the formation of acetolactate by Salmonella typhimurium extracts. Biochem. Biophys. Res. Comm. 17, 587–592 (1964)

    Google Scholar 

  • umbarger, H.E.: Amino acid biosynthesis and its regulation. In: Annual review of biochemistry (E.E. Snell, P.D. Boyer, A. Meister and C.C. Richardson, eds.), Vol. 47, pp. 533–606, Palo Alto, California: Annual Reviews Inc. 1978

    Google Scholar 

  • Whitlow, K.J., Polglase, W.J.: Relaxation of catabolite repression and loss of valine sensitivity in Escherichia coli K-12. FEBS Lett. 43, 64–66 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G.O'Donovan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutton, A., Freundlich, M. Regulation by cyclic AMP of the ilvB-encoded biosynthetic acetohydroxy acid synthase in Escherichia coli K-12. Molec. Gen. Genet. 178, 179–183 (1980). https://doi.org/10.1007/BF00267227

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267227

Keywords

Navigation